28,182 research outputs found
Quantum phases in the frustrated Heisenberg model on the bilayer honeycomb lattice
We use a combination of analytical and numerical techniques to study the
phase diagram of the frustrated Heisenberg model on the bilayer honeycomb
lattice. Using the Schwinger boson description of the spin operators followed
by a mean field decoupling, the magnetic phase diagram is studied as a function
of the frustration coupling and the interlayer coupling .
The presence of both magnetically ordered and disordered phases is
investigated by means of the evaluation of ground-state energy, spin gap, local
magnetization and spin-spin correlations. We observe a phase with a spin gap
and short range N\'eel correlations that survives for non-zero
next-nearest-neighbor interaction and interlayer coupling. Furthermore, we
detect signatures of a reentrant behavior in the melting of N\'eel phase and
symmetry restoring when the system undergoes a transition from an on-layer
nematic valence bond crystal phase to an interlayer valence bond crystal phase.
We complement our work with exact diagonalization on small clusters and
dimer-series expansion calculations, together with a linear spin wave approach
to study the phase diagram as a function of the spin , the frustration and
the interlayer couplings.Comment: 10 pages, 9 figure
Spin Hall effects for cold atoms in a light induced gauge potential
We propose an experimental scheme to observe spin Hall effects with cold
atoms in a light induced gauge potential. Under an appropriate configuration,
the cold atoms moving in a spatially varying laser field experience an
effective spin-dependent gauge potential. Through numerical simulation, we
demonstrate that such a gauge field leads to observable spin Hall currents
under realistic conditions. We also discuss the quantum spin Hall state in an
optical lattice.Comment: 4 pages; The published versio
K-Chameleon and the Coincidence Problem
In this paper we present a hybrid model of k-essence and chameleon, named as
k-chameleon. In this model, due to the chameleon mechanism, the directly strong
coupling between the k-chameleon field and matters (cold dark matters and
baryons) is allowed. In the radiation dominated epoch, the interaction between
the k-chameleon field and background matters can be neglected, the behavior of
the k-chameleon therefore is the same as that of the ordinary k-essence. After
the onset of matter domination, the strong coupling between the k-chameleon and
matters dramatically changes the result of the ordinary k-essence. We find that
during the matter-dominated epoch, only two kinds of attractors may exist: one
is the familiar {\bf K} attractor and the other is a completely {\em new},
dubbed {\bf C} attractor. Once the universe is attracted into the {\bf C}
attractor, the fraction energy densities of the k-chameleon and
dust matter are fixed and comparable, and the universe will undergo
a power-law accelerated expansion. One can adjust the model so that the {\bf K}
attractor do not appear. Thus, the k-chameleon model provides a natural
solution to the cosmological coincidence problem.Comment: Revtex, 17 pages; v2: 18 pages, two figures, more comments and
references added, to appear in PRD, v3: published versio
Partial discharge testing of defective three-phase PILC cable under rated conditions
The ability to accurately monitor the health of power distribution plant is a very attractive prospect for utility companies. This capability would provide a system that engineers could use to assess the real-time state of the network. Analysis of the data produced could allow for more informed decisions to be made in the areas of asset replacement and maintenance scheduling amongst others. It is widely accepted that partial discharge activity is linked with the electrical ageing/degradation of high voltage equipment. Work at Southampton is focused on obtaining a better understanding of the characteristics and trends of partial discharge events associated with medium voltage cables under, 'real life' conditions. An experiment has been developed that allows for service conditions to be applied to defective paper insulated lead covered cable samples. The samples under investigation were exposed to mechanical damage designed to replicate typical problems found on an active circuit. Partial discharge measurement was undertaken during the stressing process
Partial discharge analysis of defective three-phase cable
Power distribution cable networks represent a dynamic and complex challenge with regard to the issues of maintenance and providing a reliable, high quality supply of electrical power. Utilities historically used regular off-line testing to investigate the health of their assets. This method of testing is reasonably effective for this purpose but does have certain drawbacks associated with it; customer supply can be interrupted during the testing process and the cables are generally not tested under normal operating conditions. Meaning that the test data is not representative of the Partial discharge (PD) activity that is apparent under on-line conditions and the testing activity itself could trigger previously dormant PD sources. The modern approach for understanding the health of medium voltage (MV) cable distribution networks is to continuously monitor the assets whilst on-line. Analysis if the field data is then used to inform decisions regarding asset replacement and maintenance strategies. PD activity is widely recognised as a symptom linked to the degradation of the dielectric properties of high voltage plant. UK Power Networks sponsored research is being undertaken to investigate the evolution of PD activity within three-phase paper insulated lead covered (PILC) cables containing introduced defects. An experiment has been designed to stress cable lengths in a manner that is representative of the conditions met by on-line circuits [1]. A cable section containing a defect that is known to lead to the premature failure of in-service cables has been PD tested over a range of operating temperatures. The experiment utilizes three-phase energization at rated voltage as well as thermal cycling of the cable to replicate the daily load pattern experienced by circuits in the field. The extension to this work involves PD testing cable samples containing a range of defects to produce a data set consisting of PD pulses produced by varied sources. Analysis of this data should lead to a better understanding of the signals produced by the premature ageing of these types of cable
- …
