32,869 research outputs found

    Effective g-factor in Majorana Wires

    Full text link
    We use the effective g-factor of subgap states, g*, in hybrid InAs nanowires with an epitaxial Al shell to investigate how the superconducting density of states is distributed between the semiconductor core and the metallic shell. We find a step-like reduction of g* and improved hard gap with reduced carrier density in the nanowire, controlled by gate voltage. These observations are relevant for Majorana devices, which require tunable carrier density and g* exceeding the g-factor of the proximitizing superconductor. Additionally, we observe the closing and reopening of a gap in the subgap spectrum coincident with the appearance of a zero-bias conductance peak

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure

    Optimal nonlocal multipartite entanglement concentration based on projection measurements

    Full text link
    We propose an optimal nonlocal entanglement concentration protocol (ECP) for multi-photon systems in a partially entangled pure state, resorting to the projection measurement on an additional photon. One party in quantum communication first performs a parity-check measurement on her photon in an N-photon system and an additional photon, and then she projects the additional photon into an orthogonal Hilbert space for dividing the original NN-photon systems into two groups. In the first group, the N parties will obtain a subset of NN-photon systems in a maximally entangled state. In the second group, they will obtain some less-entangled N-photon systems which are the resource for the entanglement concentration in the next round. By iterating the entanglement concentration process several times, the present ECP has the maximal success probability which is just equivalent to the entanglement of the partially entangled state. That is, this ECP is an optimal one.Comment: 5 pages, 4 figure

    Disk stars in the Milky Way detected beyond 25 kpc from its center

    Full text link
    CONTEXT. The maximum size of the Galactic stellar disk is not yet known. Some studies have suggested an abrupt drop-off of the stellar density of the disk at Galactocentric distances R15R\gtrsim 15 kpc, which means that in practice no disk stars or only very few of them should be found beyond this limit. However, stars in the Milky Way plane are detected at larger distances. In addition to the halo component, star counts have placed the end of the disk beyond 20 kpc, although this has not been spectroscopically confirmed so far. AIMS. Here, we aim to spectroscopically confirm the presence of the disk stars up to much larger distances. METHODS. With data from the LAMOST and SDSS-APOGEE spectroscopic surveys, we statistically derived the maximum distance at which the metallicity distribution of stars in the Galactic plane is distinct from that of the halo populations. RESULTS. Our analysis reveals the presence of disk stars at R>26 kpc (99.7% C.L.) and even at R>31 kpc (95.4% C.L.).Comment: 4 pages, accepted to be published in A&A-Letter

    Temperature - pressure phase diagram of the superconducting iron pnictide LiFeP

    Full text link
    Electrical-resistivity and magnetic-susceptibility measurements under hydrostatic pressure up to p = 2.75 GPa have been performed on superconducting LiFeP. A broad superconducting (SC) region exists in the temperature - pressure (T-p) phase diagram. No indications for a spin-density-wave transition have been found, but an enhanced resistivity coefficient at low pressures hints at the presence of magnetic fluctuations. Our results show that the superconducting state in LiFeP is more robust than in the isostructural and isoelectronic LiFeAs. We suggest that this finding is related to the nearly regular [FeP_4] tetrahedron in LiFeP.Comment: 4 pages, 4 figure

    Environment, morphology and stellar populations of bulgeless low surface brightness galaxies

    Full text link
    Based on the Sloan Digital Sky Survey DR 7, we investigate the environment, morphology and stellar population of bulgeless low surface brightness (LSB) galaxies in a volume-limited sample with redshift ranging from 0.024 to 0.04 and MrM_r \leq 18.8-18.8. The local density parameter Σ5\Sigma_5 is used to trace their environments. We find that, for bulgeless galaxies, the surface brightness does not depend on the environment. The stellar populations are compared for bulgeless LSB galaxies in different environments and for bulgeless LSB galaxies with different morphologies. The stellar populations of LSB galaxies in low density regions are similar to those of LSB galaxies in high density regions. Irregular LSB galaxies have more young stars and are more metal-poor than regular LSB galaxies. These results suggest that the evolution of LSB galaxies may be driven by their dynamics including mergers rather than by their large scale environment.Comment: 12 pages, 13 figures, Accepted by A&

    Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device

    Full text link
    We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. The device is made from an epitaxially grown InSb nanowire with two superconductor Nb contacts on a Si/SiO2_2 substrate. At low temperatures, a quantum dot is formed in the segment of the InSb nanowire between the two Nb contacts and the two Nb contacted segments of the InSb nanowire show superconductivity due to the proximity effect. At zero magnetic field, well defined Coulomb diamonds and the Kondo effect are observed in the charge stability diagram measurements in the Coulomb blockade regime of the quantum dot. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed in the same Coulomb blockade regime. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with the signatures of Majorana fermion physics in a nanowire based topological superconductor-quantum dot-topological superconductor system, in which the two Majorana bound states adjacent to the quantum dot are hybridized into a pair of quasi-particle states with finite energies and the other two Majorana bound states remain as the zero-energy modes located at the two ends of the entire InSb nanowire.Comment: 6 pages, 4 figure
    corecore