80,390 research outputs found

    Comment on ``Quantum Phase of Induced Dipoles Moving in a Magnetic Field''

    Full text link
    It has recently been suggested that an Aharonov-Bohm phase should be capable of detection using beams of neutral polarizable particles. A more careful analysis of the proposed experiment suffices to show, however, that it cannot be performed regardless of the strength of the external electric and magnetic fields.Comment: 2 pages, latex file, no figure

    Learning Robust Search Strategies Using a Bandit-Based Approach

    Full text link
    Effective solving of constraint problems often requires choosing good or specific search heuristics. However, choosing or designing a good search heuristic is non-trivial and is often a manual process. In this paper, rather than manually choosing/designing search heuristics, we propose the use of bandit-based learning techniques to automatically select search heuristics. Our approach is online where the solver learns and selects from a set of heuristics during search. The goal is to obtain automatic search heuristics which give robust performance. Preliminary experiments show that our adaptive technique is more robust than the original search heuristics. It can also outperform the original heuristics.Comment: Published at the Proceedings of 32th AAAI Conference on Artificial Intelligence (AAAI'18

    Analytic Expressions for Geometric Measure of Three Qubit States

    Full text link
    A new method is developed to derive an algebraic equations for the geometric measure of entanglement of three qubit pure states. The equations are derived explicitly and solved in cases of most interest. These equations allow oneself to derive the analytic expressions of the geometric entanglement measure in the wide range of the three qubit systems, including the general class of W-states and states which are symmetric under permutation of two qubits. The nearest separable states are not necessarily unique and highly entangled states are surrounded by the one-parametric set of equally distant separable states. A possibility for the physical applications of the various three qubit states to quantum teleportation and superdense coding is suggested from the aspect of the entanglement.Comment: 6 pages, no figure, PRA versio

    The dynamics of condensate shells: collective modes and expansion

    Get PDF
    We explore the physics of three-dimensional shell-shaped condensates, relevant to cold atoms in "bubble traps" and to Mott insulator-superfluid systems in optical lattices. We study the ground state of the condensate wavefunction, spherically-symmetric collective modes, and expansion properties of such a shell using a combination of analytical and numerical techniques. We find two breathing-type modes with frequencies that are distinct from that of the filled spherical condensate. Upon trap release and subsequent expansion, we find that the system displays self-interference fringes. We estimate characteristic time scales, degree of mass accumulation, three-body loss, and kinetic energy release during expansion for a typical system of Rb87

    Isobaric yield ratio difference between the 140 AA MeV 58,64^{58, 64}Ni + 9^{9}Be reactions studied by antisymmetric molecular dynamics model

    Full text link
    \item[Background] The isobaric yield ratio difference (IBD) method is found to be sensitive to the density difference of neutron-rich nucleus induced reaction around the Fermi energy. \item[Purpose] An investigation is performed to study the IBD results in the transport model. \item[Methods] The antisymmetric molecular dynamics (AMD) model plus the sequential decay model GEMINI are adopted to simulate the 140AA MeV 58,64^{58, 64}Ni + 9^{9}Be reactions. A relative small coalescence radius Rc=_c = 2.5 fm is used for the phase space at t=t = 500 fm/c to form the hot fragment. Two limitations on the impact parameter (b1=02b1 = 0 - 2 fm and b2=09b2 = 0 - 9 fm) are used to study the effect of central collisions in IBD. \item[Results] The isobaric yield ratios (IYRs) for the large--AA fragments are found to be suppressed in the symmetric reaction. The IBD results for fragments with neutron-excess I=I = 0 and 1 are obtained. A small difference is found in the IBDs with the b1b1 and b2b2 limitations in the AMD simulated reactions. The IBD with b1b1 and b2b2 are quite similar in the AMD + GEMINI simulated reactions. \item[Conclusions] The IBDs for the I=I = 0 and 1 chains are mainly determined by the central collisions, which reflects the nuclear density in the core region of the reaction system. The increasing part of the IBD distribution is found due to the difference between the densities in the peripheral collisions of the reactions. The sequential decay process influences the IBD results. The AMD + GEMINI simulation can better reproduce the experimental IBDs than the AMD simulation.Comment: 6 pages, 5 figure

    Massive Domain Wall Fermions on Four-dimensional Anisotropic Lattices

    Get PDF
    We formulate the massive domain wall fermions on anisotropic lattices. For the massive domain wall fermion, we find that the dispersion relation assumes the usual form in the low momentum region when the bare parameters are properly tuned. The quark self-energy and the quark field renormalization constants are calculated to one-loop in bare lattice perturbation theory. For light domain wall fermions, we verified that the chiral mode is stable against quantum fluctuations on anisotropic lattices. This calculation serves as a guidance for the tuning of the parameters in the quark action in future numerical simulations.Comment: 36 pages, 14 figures, references adde

    Exploring the Way to Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model

    Full text link
    Drift-diffusion model is an indispensable modeling tool to understand the carrier dynamics (transport, recombination, and collection) and simulate practical-efficiency of solar cells (SCs) through taking into account various carrier recombination losses existing in multilayered device structures. Exploring the way to predict and approach the SC efficiency limit by using the drift-diffusion model will enable us to gain more physical insights and design guidelines for emerging photovoltaics, particularly perovskite solar cells. Our work finds out that two procedures are the prerequisites for predicting and approaching the SC efficiency limit. Firstly, the intrinsic radiative recombination needs to be corrected after adopting optical designs which will significantly affect the open-circuit voltage at its Shockley-Queisser limit. Through considering a detailed balance between emission and absorption of semiconductor materials at the thermal equilibrium, and the Boltzmann statistics at the non-equilibrium, we offer a different approach to derive the accurate expression of intrinsic radiative recombination with the optical corrections for semiconductor materials. The new expression captures light trapping of the absorbed photons and angular restriction of the emitted photons simultaneously, which are ignored in the traditional Roosbroeck-Shockley expression. Secondly, the contact characteristics of the electrodes need to be carefully engineered to eliminate the charge accumulation and surface recombination at the electrodes. The selective contact or blocking layer incorporated nonselective contact that inhibits the surface recombination at the electrode is another important prerequisite. With the two procedures, the accurate prediction of efficiency limit and precise evaluation of efficiency degradation for perovskite solar cells are attainable by the drift-diffusion model.Comment: 32 pages, 11 figure
    corecore