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Dynamics of condensate shells: Collective modes and expansion

C. Lannert,1 T.-C. Wei,2 and S. Vishveshwara2

1Wellesley College, Wellesley, Massachusetts 02481, USA
2University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

�Received 11 July 2006; published 10 January 2007�

We explore the physics of three-dimensional shell-shaped condensates, relevant to cold atoms in “bubble
traps.” We study the ground state of the condensate wave function, spherically symmetric collective modes,
and expansion properties of such a shell using a combination of analytical and numerical techniques. We find
two breathing-type modes with frequencies that are distinct from that of the filled spherical condensate. Upon
trap release and subsequent expansion, we find that the system displays self-interference fringes. We estimate
characteristic time scales, degree of mass accumulation, three-body loss, and kinetic energy release during
expansion for a typical system of 87Rb.

DOI: 10.1103/PhysRevA.75.013611 PACS number�s�: 03.75.Kk, 05.30.Jp, 32.80.Pj

The cooling and trapping of dilute atoms has recently
achieved unprecedented levels of control and sophistication.
With the advent of optical lattices �1�, quasi-one- and quasi-
two-dimensional trapping potentials �2�, and mixtures of dif-
ferent species �3�, condensates of bosonic atoms have been
created in a plethora of interesting geometries. Boson mix-
tures in a particular regime of interactions can form a layered
or core-and-shell structure �4�. Bosons in a three-
dimensional optical lattice also display a shell structure as a
result of the confining trap �5�. It may even be possible to
confine a dilute atomic condensate to a spherical shell-
shaped region by means of a specifically designed “bubble
trap” �6�. Towards an understanding of these, and other sys-
tems where superfluid order exists in “hollow” geometries,
we consider the physics of a condensate whose shape is a
three-dimensional spherical shell. We identify key features in
the condensate collective modes and expansion upon trap
release that distinguish such shell-shaped condensates from
the more common filled cases. Moreover, we find that expan-
sion properties have distinct similarities with “Bose-nova”
experiments �7�.

A condensate confined by a three-dimensional confining
potential of the form V�r�= �1/2�m�0

2�r−r0�2 �where m is the
atomic mass� at zero temperature and weak interatomic in-
teraction obeys the time-independent Gross-Pitaevskii �GP�
equation:

�−
�2

2m
�2 + V�r� + g���r��2���r� �

�H
��* = ���r� , �1�

where g is a measure of the repulsive interactions between
the atoms �g=4��2a /m with a the s-wave scattering length�
and � is the chemical potential, set by the normalization
condition: 	���r��2d3r=N. The density of condensed atoms is
given by n�r�= ���r��2.

For suitably large N, the kinetic energy is very small com-
pared to the potential energies and the gradient term may be
neglected �the Thomas-Fermi approximation� �8�, giving an
approximate ground state wave function �TF�r�
=
��−V�r�� /g in the regions where ��V�r� and zero else-
where. In this approximation, the condensate occupies a
spherically symmetric shell centered at r0 with half-width

r1=
2� / �m�0
2�. In the limit of a thin shell �r1�r0�, r1 is

found to be �3gN / �8�m�0
2r0

2��1/3. Therefore, for the Thomas-
Fermi wave function, the condition for a thin shell can be
written

	ts �
r1

r0
= � 3gN

8�m�0
2r0

5�1/3

= �3Naosca

2r0
5 �1/3

� 1,

where we have introduced the oscillator length aosc
�
� / �m�0�. In order to obtain analytic results, we will of-
ten work within this “thin shell” limit. While applicable to
typical conditions in bubble traps and optical lattice systems,
we also expect an analysis of thin shells to capture the salient
features of thicker shells. Notable expected differences will
be discussed in some cases.

While we are able to go beyond the Thomas-Fermi ap-
proximation using numerical techniques, it is worth estimat-
ing its regime of validity. Using a radially symmetric Gauss-
ian wave function centered at radius R0 and with
characteristic width R1, we find the ratio of the zero-point
kinetic energy to the potential energy of interaction to scale
as R0

2 / �NaR1�. �The analogous ratio for a condensate in a
harmonic trap centered at r=0 scales as R / �Na� �see, e.g.,
Ref. �4���. Hence, for the shell �i.e., taking R0 to be r0 and R1
to be r1�, the Thomas-Fermi approximation can be expected
to be valid when 	TF�r0

2 / �Nar1�= ��2r0
8� / �3N4aosc

4 a4��1/3

�1.
For a trap with �0=2�
20 Hz and r0=20aosc and a

cloud of N=106 atoms of 87Rb in the �F=1,mF=−1� or �F
=2,mF=2� state �for which a�5.45 nm �9��, we have 	ts
=r1 /r0�0.08 and 	TF�0.09. In excellent numerical agree-
ment, using the imaginary time technique of Chiofalo et al.
�10� and the parameters given above, we find the ratio of the
kinetic energy to the total energy in the ground state to be
K /Etot0.093.

Towards obtaining the lowest-energy collective modes of
a thin spherical shell of superfluid, we consider a trial wave
function for the shell condensate of the form

�trial�R0,R1� = A

N

R0

R1

F� r − R0

R1
�ei��r�, �2�

where A is a dimensionless normalization constant �in the
thin shell limit� and F is a smooth real function that is neg-
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ligibly small for �r−R0��R1 �for instance a Gaussian, F�x�
=e−x2/2�. We note that except for the discontinuity at the con-
densate boundary, the Thomas-Fermi wave function is in the
class of wave functions described by Eq. �2�. The function
��r� has the usual relation to the velocity of the condensate,
v=��� /m. R0 and R1 are variational parameters corre-
sponding to the average radius and characteristic width of the
cloud, respectively. A description of the cloud in terms of the
collective coordinates R0 and R1 is expected to capture the
salient features of the isotropic, �=0, collective modes of the
superfluid shell.

Collective modes. Starting with the variational wave func-
tion in Eq. �2� and allowing the parameters R0 and R1 to vary
in time, standard methods yield equations of motion for these
collective coordinates �see, e.g., Ref. �4��. We start by noting
that the energy of the condensate for a wave function of the
form Eq. �2� can be written as

H�R0,R1,�� =
m

2
� n�r��v�r��2d3r + Ueff, �3�

where Ueff is equal to the energy of the cloud if the phase �
does not vary in space and acts as an effective potential for
the collective coordinates R0 and R1. It can be written in a
physically transparent form as a sum of contributions from
zero-point �or confinement� energy, potential energy from the
trap, and interaction energy, Ueff�R0 ,R1�=Ezp+Etr+Eint.
When the system is in equilibrium, v�r�=0 and minimization
of Eq. �3� yields the variational ground state values of R0 and
R1. For the trial wave function in Eq. �2�, in the thin shell
limit �R1�R0�, we find

Ezp =
�2

2m
� �d���

dr
�2

d3r �
czp

R1
2 ,

Etr =� V�r����2d3r �
Nm

2
�0

2�ctrR1
2 + �R0 − r0�2� ,

Eint =
g

2
� ���4d3r �

cint

R0
2R1

,

to lowest nonvanishing order in R1 /R0, where czp, ctr, and cint
are independent of R0 and R1 and are determined by the form
of the function F in Eq. �2�.

The variational energy, Eq. �3� can be used to find two,
low-energy, collective excitations of the superfluid shell: one
in which the width, R1, oscillates around its equilibrium
value �the “accordion mode”� and another in which the av-
erage radius of the cloud, R0, oscillates around its equilib-
rium value, r0 �the “balloon mode”�. For simplicity, we as-
sume that in the accordion mode, the mean radius of the shell
stays fixed at r0 while the width oscillates and that in the
balloon mode the width, R1, remains fixed while the mean
radius oscillates. While it is clear that any exact solution will
couple changes in the width to changes in the mean radius,
the “decoupled� oscillations we consider here can be ex-
pected to illuminate the correct low-energy physics. Indeed,
in the thin shell limit, we find that oscillations in R1 do not
affect the mean radius R0 and that oscillations in R0 affect the

width, R1, at a negligible level for small oscillations about
equilibrium �smaller by a factor �R0−r0� /r0�.

The balloon mode. For this mode, we consider a velocity

field of the form vb=r̂, where �r , Ṙ0 , Ṙ1� is a variational
parameter, or equivalently, ��r�=mr /�. As a lowest-order
approximation, we hold R1 fixed at its equilibrium value, r1,
and only allow R0 to vary in time. By constructing a La-

grangian for the parameters R0 and , we find = Ṙ0⇒vb

= Ṙ0r̂ and an equation of motion for R0,

mNR̈0 = −
�Ueff

�R0
=

2cint

R0
3r1

− Nm�0
2�R0 − r0� . �4�

In the thin shell limit, Eq. �4� yields R0
eq=r0 and a frequency

of small oscillations around this equilibrium value

�b  �0 + O�r1
2/R0

2� . �5�

We note that the thin-shell approximation imposes a con-
straint on the amplitude of oscillations in R0, R0

min�r1.
The accordion mode. For this mode, we consider a veloc-

ity field for the condensate of the form va=�r−r0�r̂
�equivalently, ��r�=m�r−r0�2 / �2��� and allow R1 to vary
in time while holding R0 fixed at its equilibrium value, r0.
Following the same procedure as for the balloon mode, we

find = Ṙ1 /R1⇒va= r̂�r−r0�R1 /R1 and an equation of mo-
tion for R1,

meff
a R̈1 = −

�Ueff

�R1
=

2czp

R1
3 +

cint

R1
2r0

2 − meff
a �0

2R1, �6�

with meff
a �4�mA2N	−�

� q2F2�q�dq. Using the fact that
�Ueff /�R1=0 at equilibrium, the frequency of small oscilla-
tions of R1 about its equilibrium value can be written

�a = �0
4 −
Eint

2Etr
. �7�

The thin-shell approximation imposes a constraint on the
amplitude of oscillations in R1, R1

max�r0. In the limit of
weak interactions, Eint�Etr, Eq. �7� reduces to �a=2�0.
Thus, in the weak interaction limit, the frequency of this
mode is equivalent to that of the breathing mode of a spheri-
cal condensate cloud. In the limit of strong interactions,
Eint�Ezp, we have Eint2Etr and find �a=
3�0. This result
should be compared with the strong interaction limit of the
spherical breathing mode, �br=
5�0.

We note that the modes in the thin-shell limit described by
Eq. �5� and Eq. �7� have a structure identical to that of a
one-dimensional condensate, corresponding to its one-
dimensional sloshing and breathing modes, respectively �11�.
For thicker shells, we expect corrections to our results that
couple the R1 and R0 degrees of freedom. In fact, in the limit
that R0→0 we expect the balloon and accordion modes to
tend to the breathing mode and next radially symmetric
mode �n=2� of a filled spherical condensate with R0=0.

Expansion. The dynamics of the spherical shell upon re-
lease of the trapping potential has noteworthy features absent
in the case of the filled sphere. Upon release, the initial con-
finement of the condensate causes the outer edge to expand
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outwards and the inner edge to collapse inwards. As a result,
the system can potentially exhibit accumulation of mass at
the center, and the condensate can interfere with itself when
diametrically opposite regions come together.

The time scale of expansion can be estimated within the
thin-shell approximation �where the dynamics of the width,
R1, do not affect the mean radius, R0, which we approximate
as fixed at r0�. Taking the function F in Eq. �2� to be a
Gaussian and evaluating the different energy contributions as
before, we find that energy conservation between the instant
the trap is switched off and later times t gives the relation-
ship

�2

mR1
2�0�

+
gN

�2��3/2R1�0�r0
2 = mṘ1

2 +
�2

mR1
2 +

gN

�2��3/2R1r0
2 ,

where the time argument of R1�t� on the right-hand side is
suppressed, and R1�0� is the characteristic width of the con-
densate shell before expansion. Assuming the initial energy
is dominated by the interaction energy, we find that, on the
time scale for which the shell expands enough to become
dilute but not enough to reach the center, R1

2�t� /R1
2�0�

�2�0
2t2, in contrast to a filled sphere for which

R1
2�t� /R1

2�0���2/3��0
2t2 �4�. Hence, for typical parameters

used in this paper, a shell of initial thickness 5 �m and ra-
dius 50 �m should expand to a thickness of R1�t�=20 �m
on a time scale of around 20 ms, which is amenable to ex-
perimental detection.

To quantify the physics of the expanding shell, we per-
formed a numerical time evolution of the initial condensate
wave function �given by the numerically obtained result dis-
cussed earlier� after release from the trap, including interac-
tions. This expansion process was obtained using the real-
time synchronous Visscher method �12� to integrate the time-
dependent GP equation, i�d� /dt=�H /��*. The results are
shown in Fig. 1.

Two general features of the expansion deserve discussion.
First, mass accumulation in the center can result in a density
greater �but not necessarily much greater� than the initial
density. We note that repulsive interactions between the at-
oms prevent the density from becoming as large as it would
in the noninteracting case. Second, interference fringes ap-
pear after the inner radius of the cloud has reached the origin,
demonstrating self-interference of the condensate. For two
Gaussian condensates initially separated by a distance D, the
fringe size at long times is given by �r=2��t / �mD� �4� in
the absence of interactions. The free expansion of an initially
thin Gaussian shell is straightforward to calculate and we
find that the fringe spacing at long times is identical to that
of two Gaussian condensates, but with the initial separation,
D, replaced by the initial diameter of the shell, 2r0. This
implies �r=�t�0aosc

2 /r0, which for r0=20aosc gives a fringe
spacing at time t�0=10 of �r1.6aosc. This compares to an
average fringe size observed in our numerics of about
1.2aosc. The difference in precise values presumably results
from the effects of interparticle interactions and the non-
Gaussian shape of the initial wave function.

The dynamics of the shell upon trap release has distinct
parallels with the Bose-nova collapse of a condensate when

the interatomic interactions are switched from repulsive to
attractive. For the shell, the initial implosion is caused by the
quantum pressure of the condensate forcing itself to fill the
low-density region at the center. Similar to the Bose-nova
case, mass buildup near the origin is followed by a relaxation
and expansion on time scales comparable to the trap fre-
quency. An important question, given these parallels, is
whether three-body recombination and subsequent “loss” of
atoms is appreciable in the case of the released shell �as it is
in the case of the Bose-nova collapse �7��. These losses are
described by the equation dn /dt=−K3n3 where K3 is the
three-body loss rate �4�. Concentrating on the time in our
numerics with the largest density �at t�6.5/�0�, we estimate
that the density in the central plateau is n350/aosc

3 over a
radius of about aosc. Assuming that this density persists for
the entire time between snapshots, �t�3/�0, and taking
K3=4.0
10−30 cm6/s �4�, we find an upper bound on the
number of particles lost in this region during this time slice
of �N0.09, making three-body recombination negligible
for the case considered here.

The effects of mass accumulation would be enhanced if
only the inner edge of the trap were removed, suppressing
the outward expansion of the condensate. This more dra-
matic case was considered by Zobay and Garraway �6�, in
which they modeled an initially shell-shaped trap quickly

FIG. 1. �Color online� Expansion of a thin spherical shell. �a�
Evolution of the density as a function of radial position and time.
�b� Snapshots of the density profile at times t=0,3 ,6 ,9 ,12 �from
the lowest curve, subsequent curves are shifted up by 100 for
clarity�.
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switched into a harmonic trap. Similar features of mass ac-
cumulation and self-interference fringes were found in the
case of this bubble trap. For a shell with the parameters
given in this paper, we can estimate the time scale for col-
lapse and the kinetic energy gain in this scenario by consid-
ering a small cavity of radius R2 at the center of a conden-
sate. In the Thomas-Fermi approximation, the dynamics of
such a cavity can be mapped to the standard hydrodynamics
problem of a collapsing bubble in a fluid governed by the
equation �13�

p − p0

�
=

R2
2R̈2 + 2R2Ṙ2

2

r
−

R2
4Ṙ2

2r4 . �8�

Here, �=mn is the condensate mass density, p is the pressure
at radius r and p0=n2g /2 is the pressure far from the cavity.
Integrating Eq. �8� at the edge of the bubble �r=R2� and
making the substitution R2�t�=R2�0�x1/3 gives the time for
complete collapse in terms of the initial radius, R2�0�: tf

�0.915R2�0�
� / p0. The kinetic energy gained by the par-
ticles upon reaching the center is given by EKE
=4� /3p0R2

3�0�. For a cavity of radius 40 �m and quantum
pressure of magnitude p0=1
10−14 erg/cm3, the collapse

time is on the order of 100 ms and the kinetic energy gained
per particle is on the order of 1 nK. The small cavity treat-
ment suggests that the collapse of the inner radius can be
accompanied by a measurable amount of kinetic energy gain
and mass accumulation.

In conclusion, motivated by possible new trapping poten-
tials for dilute ultracold atoms, as well as general interest in
new geometries for Bose-Einstein condensates, we have ex-
plored the collective modes and expansion dynamics of a
superfluid confined to a spherical shell. The two breathing
modes we find are distinct from those of a filled spherical
condensate in the limit of strong interactions. The expansion
properties of the shell after release from the trap are found to
have some notable similarities with Bose-nova physics, par-
ticularly mass accumulation and self-interference.
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Wang, and to thank B. DeMarco for valuable insights. Two
of the authors �C.L. and S.V.� are grateful for the hospitality
of the Aspen Center for Physics, where much of this work
was carried out. This work was supported in part by NSF
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