9,805 research outputs found
Ziv-Zakai Error Bounds for Quantum Parameter Estimation
I propose quantum versions of the Ziv-Zakai bounds as alternatives to the
widely used quantum Cram\'er-Rao bounds for quantum parameter estimation. From
a simple form of the proposed bounds, I derive both a "Heisenberg" error limit
that scales with the average energy and a limit similar to the quantum
Cram\'er-Rao bound that scales with the energy variance. These results are
further illustrated by applying the bound to a few examples of optical phase
estimation, which show that a quantum Ziv-Zakai bound can be much higher and
thus tighter than a quantum Cram\'er-Rao bound for states with highly
non-Gaussian photon-number statistics in certain regimes and also stay close to
the latter where the latter is expected to be tight.Comment: v1: preliminary result, 3 pages; v2: major update, 4 pages +
supplementary calculations, v3: another major update, added proof of
"Heisenberg" limit, v4: accepted by PR
Ku-band system design study and TDRSS interface analysis
The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated
The Discovery of an X-ray/UV Stellar Flare from the Late-K/Early-M Dwarf LMC 335
We report the discovery of an X-ray/UV stellar flare from the source LMC 335,
captured by XMM-Newton in the field of the Large Magellanic Cloud. The flare
event was recorded continuously in X-ray for its first 10 hours from the
precursor to the late decay phases. The observed fluxes increased by more than
two orders of magnitude at its peak in X-ray and at least one in the UV as
compared to quiescence. The peak 0.1-7.0 keV X-ray flux is derived from the
two-temperature APEC model to be ~(8.4 +/- 0.6) x 10^-12 erg cm-2 s-1.
Combining astrometric information from multiple X-ray observations in the
quiescent and flare states, we identify the NIR counterpart of LMC 335 as the
2MASS source J05414534-6921512. The NIR color relations and spectroscopic
parallax characterize the source as a Galactic K7-M4 dwarf at a foreground
distance of (100 - 264) pc, implying a total energy output of the entire event
of ~(0.4 - 2.9) x 10^35 erg. This report comprises detailed analyses of this
late-K / early-M dwarf flare event that has the longest time coverage yet
reported in the literature. The flare decay can be modeled with two exponential
components with timescales of ~28 min and ~4 hours, with a single component
decay firmly ruled out. The X-ray spectra during flare can be described by two
components, a dominant high temperature component of ~40-60MK and a low
temperature component of ~10MK, with a flare loop length of about 1.1-1.3
stellar radius.Comment: 35 pages, 6 figures, 5 tables, accepted for publication in Ap
Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous time limit and state-variable approach to phase-locked loop design
We consider the continuous-time version of our recently proposed quantum
theory of optical temporal phase and instantaneous frequency [Tsang, Shapiro,
and Lloyd, Phys. Rev. A 78, 053820 (2008)]. Using a state-variable approach to
estimation, we design homodyne phase-locked loops that can measure the temporal
phase with quantum-limited accuracy. We show that post-processing can further
improve the estimation performance, if delay is allowed in the estimation. We
also investigate the fundamental uncertainties in the simultaneous estimation
of harmonic-oscillator position and momentum via continuous optical phase
measurements from the classical estimation theory perspective. In the case of
delayed estimation, we find that the inferred uncertainty product can drop
below that allowed by the Heisenberg uncertainty relation. Although this result
seems counter-intuitive, we argue that it does not violate any basic principle
of quantum mechanics.Comment: 11 pages, 6 figures, v2: accepted by PR
Investigation of remote sensing techniques of measuring soil moisture
Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models
Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis.
11 p.-4 fig.-1 tab.Background: Increased circulating levels of endoglin+ endothelial microparticles (EMPs) have been identified in several cardiovascular disorders, related to severity. Endoglin is an auxilary receptor for transforming growth factor β (TGF-β) important in the regulation of vascular structure.Results: We quantified the number of microparticles in plasma of six patients with chronic thromboembolic pulmonary hypertension (CTEPH) and age- and sex-matched pulmonary embolic (PE) and healthy controls and investigated the role of microparticle endoglin in the regulation of pulmonary endothelial function in vitro. Results show significantly increased levels of endoglin+ EMPs in CTEPH plasma, compared to healthy and disease controls. Co-culture of human pulmonary endothelial cells with CTEPH microparticles increased intracellular levels of endoglin and enhanced
TGF-β-induced angiogenesis and Smad1,5,8 phosphorylation in cells, without affecting BMPRII expression. In an in vitro model, we generated endothelium-derived MPs with enforced membrane localization of endoglin. Co-culture of these MPs with endothelial cells increased cellular endoglin content, improved cell survival and stimulated
angiogenesis in a manner similar to the effects induced by overexpressed protein.Conclusions: Increased generation of endoglin+ EMPs in CTEPH is likely to represent a protective mechanism supporting endothelial cell survival and angiogenesis, set to counteract the effects of vascular occlusion and endothelial damage.This research was supported by a project grant (PG 11/13/28765) from the British Heart Foundation and by grants from Ministerio de Economia y Competitividad of Spain (SAF2013-43421-R to CB)Peer reviewe
- …
