3,367 research outputs found

    Universality in Glassy Low-Temperature Physics

    Full text link
    We propose a microscopic translationally invariant glass model which exhibits two level tunneling systems with a broad range of asymmetries and barrier heights in its glassy phase. Their distribution is qualitatively different from what is commonly assumed in phenomenological models, in that symmetric tunneling systems are systematically suppressed. Still, the model exhibits the usual glassy low-temperature anomalies. Universality is due to the collective origin of the glassy potential energy landscape. We obtain a simple explanation also for the mysterious {\em quantitative} universality expressed in the unusually narrow universal glassy range of values for the internal friction plateau.Comment: 4 pages, 5 figures, uses RevTeX

    Electroweak effects in top-quark pair production at Hadron Colliders

    Full text link
    Top-quark physics plays an important role at hadron colliders such as the Tevatron collider at Fermilab or the upcoming Large Hadron Collider (LHC) at CERN. Given the planned experimental precision, detailed theoretical predictions are mandatory. In this article we present analytic results for the complete electroweak corrections to gluon induced top-quark pair production, completing our earlier results for the quark-induced reaction. As an application we discuss top-quark pair production at Tevatron and at LHC. In particular we show that, although small for inclusive quantities, weak corrections can be sizeable for differential distribution

    Precise Charm- and Bottom-Quark Masses: Theoretical and Experimental Uncertainties

    Full text link
    Recent theoretical and experimental improvements in the determination of charm and bottom quark masses are discussed. A new and improved evaluation of the contribution from the gluon condensate to the charm mass determination and a detailed study of potential uncertainties in the continuum cross section for bbˉb\bar b production is presented, together with a study of the parametric uncertainty from the αs\alpha_s-dependence of our results. The final results, mc(3GeV)=986(13)m_c(3 \text{GeV})=986(13) MeV and mb(mb)=4163(16)m_b(m_b)=4163(16) MeV, represent, together with a closely related lattice determination mc(3  GeV)=986(6)m_c(3\;{\rm GeV})=986(6) MeV, the presently most precise determinations of these two fundamental Standard Model parameters. A critical analysis of the theoretical and experimental uncertainties is presented.Comment: 12 pages, presented at Quarks~2010, 16th International Seminar of High Energy Physics, Kolomna, Russia, June 6-12, 2010; v2: references adde

    Electroweak corrections to W-boson pair production at the LHC

    Get PDF
    Vector-boson pair production ranks among the most important Standard-Model benchmark processes at the LHC, not only in view of on-going Higgs analyses. These processes may also help to gain a deeper understanding of the electroweak interaction in general, and to test the validity of the Standard Model at highest energies. In this work, the first calculation of the full one-loop electroweak corrections to on-shell W-boson pair production at hadron colliders is presented. We discuss the impact of the corrections on the total cross section as well as on relevant differential distributions. We observe that corrections due to photon-induced channels can be amazingly large at energies accessible at the LHC, while radiation of additional massive vector bosons does not influence the results significantly.Comment: 29 pages, 15 figures, 4 tables; some references and comments on \gamma\gamma -> WW added; matches version published in JHE

    High performance data analysis via coordinated caches

    Get PDF
    With the second run period of the LHC, high energy physics collaborations will have to face increasing computing infrastructural needs. Opportunistic resources are expected to absorb many computationally expensive tasks, such as Monte Carlo event simulation. This leaves dedicated HEP infrastructure with an increased load of analysis tasks that in turn will need to process an increased volume of data. In addition to storage capacities, a key factor for future computing infrastructure is therefore input bandwidth available per core. Modern data analysis infrastructure relies on one of two paradigms: data is kept on dedicated storage and accessed via network or distributed over all compute nodes and accessed locally. Dedicated storage allows data volume to grow independently of processing capacities, whereas local access allows processing capacities to scale linearly. However, with the growing data volume and processing requirements, HEP will require both of these features. For enabling adequate user analyses in the future, the KIT CMS group is merging both paradigms: popular data is spread over a local disk layer on compute nodes, while any data is available from an arbitrarily sized background storage. This concept is implemented as a pool of distributed caches, which are loosely coordinated by a central service. A Tier 3 prototype cluster is currently being set up for performant user analyses of both local and remote data

    Reconstructing the density operator by using generalized field quadratures

    Full text link
    The Wigner function for one and two-mode quantum systems is explicitely expressed in terms of the marginal distribution for the generic linearly transformed quadratures. Then, also the density operator of those systems is written in terms of the marginal distribution of these quadratures. Some examples to apply this formalism, and a reduction to the usual optical homodyne tomography are considered.Comment: 17 pages, Latex,accepted by Quantum and Semiclassical Optic

    Simulation of the hot core mode of arc attachment at a thoriated tungsten cathode by an emitter spot model

    No full text
    Recently, a constricted attachment of an atmospheric pressure low-current argon arc in the centre of the flat end face of a thoriated tungsten cathode was observed and spectroscopically analysed. Its diameter of 0.6mm and its length of the free standing part of 10mm are the typical dimensions of electrodes for high-intensity discharge lamps. This paper gives a physical interpretation of the axially symmetric arc spot by a simulation of its properties with a cathodic sheath model which takes into account a reduction in the work function above a critical temperature of the cathode surface by a thorium ion current. At first the optical observation and spectroscopic investigations are recapitulated. Then, an overview is given on the essential elements which are needed to simulate the cathodic arc attachment on a hot electrode. A simulation of a central cathode spot with these elements gives results which are far away from the experimental findings if a constant work function φ is used. Therefore, a temperature-dependent work function φ(T ) is introduced. This φ(T ) transitions from 4.55 to 3 eV above temperatures of the order of 3000 K. With this emitter spot model a constricted arc attachment is obtained by simulation in the centre of the flat end face of the cathode in accordance with experiment. For currents below iarc,max ≈ 15.5A, two spot solutions with different cathode falls are found. They form a current–voltage–characteristic consisting of two branches which extend from a turning point at iarc,max to lower currents. For iarc > iarc,max, only a diffuse mode of cathodic arc attachment is obtained. It is shown by a comparison with measured data for iarc = 7.5, 10, 12.5 and 15A that the solution with the lower cathode fall is observed experimentally

    Top quark production at future lepton colliders in the asymptotic regime

    Get PDF
    The production of a tt(bar) pair from lepton-antilepton annihilation is considered for values of the center of mass energy much larger than the top mass, typically of the few TeV size. In this regime a number of simplifications occurs that allows to derive the leading asymptotic terms of various observables using the same theoretical description that was used for light quark production. Explicit examples are shown for the Standard Model and the Minimal Supersymmetric Standard Model cases.Comment: 20 pages and 13 figures. e-mail: [email protected]

    Strong Coupling Constant from the Photon Structure Function

    Full text link
    We extract the value of the strong coupling constant alpha_s from a single-parameter pointlike fit to the photon structure function F_2^gamma at large x and Q^2 and from a first five-parameter full (pointlike and hadronic) fit to the complete F_2^gamma data set taken at PETRA, TRISTAN, and LEP. In next-to-leading order and the MSbar renormalization and factorization schemes, we obtain alpha_s(m_Z)=0.1183 +/- 0.0050(exp.)^+0.0029_-0.0028(theor.) [pointlike] and alpha_s(m_Z)=0.1198 +/- 0.0028(exp.)^+0.0034_-0.0046(theor.) [pointlike and hadronic]. We demonstrate that the data taken at LEP have reduced the experimental error by about a factor of two, so that a competitive determination of alpha_s from F_2^gamma is now possible.Comment: 11 pages, 2 tables, 2 figures. Version accepted for publication by Phys. Rev. Let
    corecore