43,537 research outputs found
A Homological Approach to Belief Propagation and Bethe Approximations
We introduce a differential complex of local observables given a
decomposition of a global set of random variables into subsets. Its boundary
operator allows us to define a transport equation equivalent to Belief
Propagation. This definition reveals a set of conserved quantities under Belief
Propagation and gives new insight on the relationship of its equilibria with
the critical points of Bethe free energy.Comment: 14 pages, submitted for the 2019 Geometric Science of Information
colloquiu
Electron Addition Spectrum in the Supersymmetric t-J Model with Inverse-Square Interaction
The electron addition spectrum A^+(k,omega) is obtained analytically for the
one-dimensional (1D) supersymmetric t-J model with 1/r^2 interaction. The
result is obtained first for a small-sized system and its validity is checked
against the numerical calculation. Then the general expression is found which
is valid for arbitrary size of the system. The thermodynamic limit of
A^+(k,omega) has a simple analytic form with contributions from one spinon, one
holon and one antiholon all of which obey fractional statistics. The upper edge
of A^+(k,omega) in the (k,omega) plane includes a delta-function peak which
reduces to that of the single-electron band in the low-density limit.Comment: 5 pages, 1 figure, accepted for publication in Phys. Rev. Let
Riociguat for the treatment of chronic thromboembolic pulmonary hypertension.
BACKGROUND: Riociguat, a member of a new class of compounds (soluble guanylate cyclase stimulators), has been shown in previous clinical studies to be beneficial in the treatment of chronic thromboembolic pulmonary hypertension. METHODS: In this phase 3, multicenter, randomized, double-blind, placebo-controlled study, we randomly assigned 261 patients with inoperable chronic thromboembolic pulmonary hypertension or persistent or recurrent pulmonary hypertension after pulmonary endarterectomy to receive placebo or riociguat. The primary end point was the change from baseline to the end of week 16 in the distance walked in 6 minutes. Secondary end points included changes from baseline in pulmonary vascular resistance, N-terminal pro-brain natriuretic peptide (NT-proBNP) level, World Health Organization (WHO) functional class, time to clinical worsening, Borg dyspnea score, quality-of-life variables, and safety. RESULTS: By week 16, the 6-minute walk distance had increased by a mean of 39 m in the riociguat group, as compared with a mean decrease of 6 m in the placebo group (least-squares mean difference, 46 m; 95% confidence interval [CI], 25 to 67; P<0.001). Pulmonary vascular resistance decreased by 226 dyn · sec · cm-5in the riociguat group and increased by 23 dyn · sec · cm-5in the placebo group (least-squares mean difference, -246 dyn · sec · cm-5; 95% CI, -303 to -190; P<0.001). Riociguat was also associated with significant improvements in the NT-proBNP level (P<0.001) and WHO functional class (P = 0.003). The most common serious adverse events were right ventricular failure (in 3% of patients in each group) and syncope (in 2% of the riociguat group and in 3% of the placebo group). CONCLUSIONS: Riociguat significantly improved exercise capacity and pulmonary vascular resistance in patients with chronic thromboembolic pulmonary hypertension. (Funded by Bayer HealthCare; CHEST-1 and CHEST-2 ClinicalTrials.gov numbers, NCT00855465 and NCT00910429, respectively.) Copyright © 2013 Massachusetts Medical Society
Enumeration of distinct mechanically stable disk packings in small systems
We create mechanically stable (MS) packings of bidisperse disks using an
algorithm in which we successively grow or shrink soft repulsive disks followed
by energy minimization until the overlaps are vanishingly small. We focus on
small systems because this enables us to enumerate nearly all distinct MS
packings. We measure the probability to obtain a MS packing at packing fraction
and find several notable results. First, the probability is highly
nonuniform. When averaged over narrow packing fraction intervals, the most
probable MS packing occurs at the highest and the probability decays
exponentially with decreasing . Even more striking, within each
packing-fraction interval, the probability can vary by many orders of
magnitude. By using two different packing-generation protocols, we show that
these results are robust and the packing frequencies do not change
qualitatively with different protocols.Comment: 4 pages, 3 figures, Conference Proceedings for X International
Workshop on Disordered System
Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section
This paper focuses on the study of existence and uniqueness of distributional
and classical solutions to the Cauchy Boltzmann problem for the soft potential
case assuming integrability of the angular part of the collision
kernel (Grad cut-off assumption). For this purpose we revisit the
Kaniel--Shinbrot iteration technique to present an elementary proof of
existence and uniqueness results that includes large data near a local
Maxwellian regime with possibly infinite initial mass. We study the propagation
of regularity using a recent estimate for the positive collision operator given
in [3], by E. Carneiro and the authors, that permits to study such propagation
without additional conditions on the collision kernel. Finally, an
-stability result (with ) is presented assuming the
aforementioned condition.Comment: 19 page
Sparse Deterministic Approximation of Bayesian Inverse Problems
We present a parametric deterministic formulation of Bayesian inverse
problems with input parameter from infinite dimensional, separable Banach
spaces. In this formulation, the forward problems are parametric, deterministic
elliptic partial differential equations, and the inverse problem is to
determine the unknown, parametric deterministic coefficients from noisy
observations comprising linear functionals of the solution.
We prove a generalized polynomial chaos representation of the posterior
density with respect to the prior measure, given noisy observational data. We
analyze the sparsity of the posterior density in terms of the summability of
the input data's coefficient sequence. To this end, we estimate the
fluctuations in the prior. We exhibit sufficient conditions on the prior model
in order for approximations of the posterior density to converge at a given
algebraic rate, in terms of the number of unknowns appearing in the
parameteric representation of the prior measure. Similar sparsity and
approximation results are also exhibited for the solution and covariance of the
elliptic partial differential equation under the posterior. These results then
form the basis for efficient uncertainty quantification, in the presence of
data with noise
Scale invariance and universality of force networks in static granular matter
Force networks form the skeleton of static granular matter. They are the key
ingredient to mechanical properties, such as stability, elasticity and sound
transmission, which are of utmost importance for civil engineering and
industrial processing. Previous studies have focused on the global structure of
external forces (the boundary condition), and on the probability distribution
of individual contact forces. The disordered spatial structure of the force
network, however, has remained elusive so far. Here we report evidence for
scale invariance of clusters of particles that interact via relatively strong
forces. We analyzed granular packings generated by molecular dynamics
simulations mimicking real granular matter; despite the visual variation, force
networks for various values of the confining pressure and other parameters have
identical scaling exponents and scaling function, and thus determine a
universality class. Remarkably, the flat ensemble of force configurations--a
simple generalization of equilibrium statistical mechanics--belongs to the same
universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur
Performance of a prototype active veto system using liquid scintillator for a dark matter search experiment
We report the performance of an active veto system using a liquid
scintillator with NaI(Tl) crystals for use in a dark matter search experiment.
When a NaI(Tl) crystal is immersed in the prototype detector, the detector tags
48% of the internal K-40 background in the 0-10 keV energy region. We also
determined the tagging efficiency for events at 6-20 keV as 26.5 +/- 1.7% of
the total events, which corresponds to 0.76 +/- 0.04 events/keV/kg/day.
According to a simulation, approximately 60% of the background events from U,
Th, and K radioisotopes in photomultiplier tubes are tagged at energies of 0-10
keV. Full shielding with a 40-cm-thick liquid scintillator can increase the
tagging efficiency for both the internal K-40 and external background to
approximately 80%.Comment: Submitted to Nuclear Instruments and Methods in Physics Research
Section
Algebraic Approach to Interacting Quantum Systems
We present an algebraic framework for interacting extended quantum systems to
study complex phenomena characterized by the coexistence and competition of
different states of matter. We start by showing how to connect different
(spin-particle-gauge) {\it languages} by means of exact mappings (isomorphisms)
that we name {\it dictionaries} and prove a fundamental theorem establishing
when two arbitrary languages can be connected. These mappings serve to unravel
symmetries which are hidden in one representation but become manifest in
another. In addition, we establish a formal link between seemingly unrelated
physical phenomena by changing the language of our model description. This link
leads to the idea of {\it universality} or equivalence. Moreover, we introduce
the novel concept of {\it emergent symmetry} as another symmetry guiding
principle. By introducing the notion of {\it hierarchical languages}, we
determine the quantum phase diagram of lattice models (previously unsolved) and
unveil hidden order parameters to explore new states of matter. Hierarchical
languages also constitute an essential tool to provide a unified description of
phases which compete and coexist. Overall, our framework provides a simple and
systematic methodology to predict and discover new kinds of orders. Another
aspect exploited by the present formalism is the relation between condensed
matter and lattice gauge theories through quantum link models. We conclude
discussing applications of these dictionaries to the area of quantum
information and computation with emphasis in building new models of computation
and quantum programming languages.Comment: 44 pages, 14 psfigures. Advances in Physics 53, 1 (2004
Rodrigues Formula for the Nonsymmetric Multivariable Hermite Polynomial
Applying a method developed by Takamura and Takano for the nonsymmetric Jack
polynomial, we present the Rodrigues formula for the nonsymmetric multivariable
Hermite polynomial.Comment: 5 pages, LaTe
- …