5,738 research outputs found
Scaling of dynamics with the range of interaction in short-range attractive colloids
We numerically study the dependence of the dynamics on the range of
interaction for the short-range square well potential. We find that,
for small , dynamics scale exactly in the same way as thermodynamics,
both for Newtonian and Brownian microscopic dynamics. For interaction ranges
from a few percent down to the Baxter limit, the relative location of the
attractive glass line and the liquid-gas line does not depend on . This
proves that in this class of potentials, disordered arrested states (gels) can
be generated only as a result of a kinetically arrested phase separation.Comment: 4 pages, 4 figure
Relation Between First Arrival Time and Permeability in Self-Affine Fractures with Areas in Contact
We demonstrate that the first arrival time in dispersive processes in
self-affine fractures are governed by the same length scale characterizing the
fractures as that which controls their permeability. In one-dimensional channel
flow this length scale is the aperture of the bottle neck, i.e., the region
having the smallest aperture. In two dimensions, the concept of a bottle neck
is generalized to that of a minimal path normal to the flow. The length scale
is then the average aperture along this path. There is a linear relationship
between the first arrival time and this length scale, even when there is strong
overlap between the fracture surfaces creating areas with zero permeability. We
express the first arrival time directly in terms of the permeability.Comment: EPL (2012)
Crystallization Mechanism of Hard Sphere Glasses
In supercooled liquids, vitrification generally suppresses crystallization.
Yet some glasses can still crystallize despite the arrest of diffusive motion.
This ill-understood process may limit the stability of glasses, but its
microscopic mechanism is not yet known. Here we present extensive computer
simulations addressing the crystallization of monodisperse hard-sphere glasses
at constant volume (as in a colloid experiment). Multiple crystalline patches
appear without particles having to diffuse more than one diameter. As these
patches grow, the mobility in neighbouring areas is enhanced, creating dynamic
heterogeneity with positive feedback. The future crystallization pattern cannot
be predicted from the coordinates alone: crystallization proceeds by a sequence
of stochastic micro-nucleation events, correlated in space by emergent dynamic
heterogeneity.Comment: 4 pages 4 figures Accepted for publication in Phys. Rev. Lett., April
201
Does gravity cause load-bearing bridges in colloidal and granular systems?
We study structures which can bear loads, "bridges", in particulate packings. To investigate the relationship between bridges and gravity, we experimentally determine bridge statistics in colloidal packings. We vary the effective magnitude and direction of gravity, volume fraction, and interactions, and find that the bridge size distributions depend only on the mean number of neighbors. We identify a universal distribution, in agreement with simulation results for granulars, suggesting that applied loads merely exploit preexisting bridges, which are inherent in dense packings
Glasses in hard spheres with short-range attraction
We report a detailed experimental study of the structure and dynamics of
glassy states in hard spheres with short-range attraction. The system is a
suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear
polymer which induces a depletion attraction between the particles. Observation
of crystallization reveals a re-entrant glass transition. Static light
scattering shows a continuous change in the static structure factors upon
increasing attraction. Dynamic light scattering results, which cover 11 orders
of magnitude in time, are consistent with the existence of two distinct kinds
of glasses, those dominated by inter-particle repulsion and caging, and those
dominated by attraction. Samples close to the `A3 point' predicted by mode
coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure
Phase separation and rotor self-assembly in active particle suspensions
Adding a non-adsorbing polymer to passive colloids induces an attraction
between the particles via the `depletion' mechanism. High enough polymer
concentrations lead to phase separation. We combine experiments, theory and
simulations to demonstrate that using active colloids (such as motile bacteria)
dramatically changes the physics of such mixtures. First, significantly
stronger inter-particle attraction is needed to cause phase separation.
Secondly, the finite size aggregates formed at lower inter-particle attraction
show unidirectional rotation. These micro-rotors demonstrate the self assembly
of functional structures using active particles. The angular speed of the
rotating clusters scales approximately as the inverse of their size, which may
be understood theoretically by assuming that the torques exerted by the
outermost bacteria in a cluster add up randomly. Our simulations suggest that
both the suppression of phase separation and the self assembly of rotors are
generic features of aggregating swimmers, and should therefore occur in a
variety of biological and synthetic active particle systems.Comment: Main text: 6 pages, 5 figures. Supplementary information: 5 pages, 4
figures. Supplementary movies available from
httP://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1116334109/-/DCSupplementa
IONA test for first-trimester detection of trisomies 21, 18 and 13
OBJECTIVE: To assess the potential performance of screening for fetal trisomies 21, 18 and 13 by cell-free DNA (cfDNA) analysis of maternal blood using the IONA\uae test.
METHODS:
This was a nested case-control study of cfDNA analysis of maternal plasma using the IONA test. Samples were obtained at 11-13 weeks' gestation, before chorionic villus sampling, from 201 euploid pregnancies, 35 with trisomy 21, four with trisomy 18 and two with trisomy 13. Laboratory personnel were blinded to the fetal karyotype.
RESULTS:
Probability scores for trisomies 21, 18 and 13 were given for 241/242 samples analyzed. No probability score was provided for one (0.5%) euploid pregnancy because of low fetal fraction. In all 35 cases of trisomy 21 the probability score for trisomy 21 was > 95% and the scores for trisomies 18 and 13 were 64 0.0001%. In all four cases of trisomy 18, the probability score for trisomy 18 was > 77% and the scores for trisomies 21 and 13 were 64 0.0001%. In the two cases of trisomy 13, the probability score for trisomy 13 was > 59% and the scores for trisomies 21 and 18 were 64 0.0001%. In the 200 euploid pregnancies with a test result, the probability score was < 0.08% for trisomy 21, < 0.001% for trisomy 18 and < 0.002% for trisomy 13. Therefore, the IONA test detected 100% of all three trisomies, with a false-positive rate of 0%.
CONCLUSION:
The IONA test successfully differentiated all cases of trisomies 21, 18 and 13 from euploid pregnancies
- …
