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Does gravity cause load-bearing bridges in colloidal and granular systems?
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We study the load-bearing properties of particulate packings. To investigate the relationship be-
tween load-bearing structures (‘bridges’) and gravity, we experimentally determine bridge statistics
in colloidal packings. We vary the effective magnitude and direction of gravity, volume fraction,
and interactions, and find that the bridge size distributions depend only on the mean number of
neighbors. We identify a universal distribution, in agreement with simulation results for granulars,
suggesting that applied loads merely exploit pre-existing bridges, which are inherent structures in
dense packings.

PACS numbers: 82.70.D, 45.70.Cc

Particulate systems are ubiquitous in nature and im-
portant in diverse industrial applications. The load-
bearing properties of concentrated particulates and their
stability under gravity or other external forces are key
issues for soils, powders, ceramics, colloids, porous me-
dia, packed bed reactors and many other applications.
Load-bearing properties have been linked to structural
‘bridges’, a concept developed in the analysis of com-
puter simulations of granulars [1–8]. Particles belonging
to a given bridge mutually stabilize each other against
an applied force, such as gravity. Bridges can have var-
ious architectures, ranging from linear [4, 6, 7] to more
complex, branched structures [4, 7, 8]. While the bridge
size distributions, P (m), putatively link the particle con-
figuration and the load-bearing properties of a packing,
aspects of the nature of this relationship remain obscure.

Load-bearing structures are necessary in granular ma-
terials to provide stability against gravity. In contrast,
thermal energy governs colloidal systems, ensuring that
particles remain homogeneously dispersed even if their
density differs from the surrounding fluid medium: load-
bearing structures are not required for stability against
gravity. However, the balance between gravity and ther-
mal agitation can be tuned in colloidal systems. The
effect of gravity is quantified by the dimensionless gravi-
tational Péclet number Pe, which compares a single par-
ticle’s gravitational energy on its own length scale to its
thermal energy. In this work we consider equal-sized
spheres (radius R), and define Pe = mgR/kBT , where
m is the buoyant mass of a single particle, g the grav-
itational acceleration and kBT the thermal energy. All
particulate systems lie between the colloidal (Pe ≪ 1)
and granular (Pe ≫ 1) limits.

The question of how a particle packing can be me-
chanically stable goes back at least to J. C. Maxwell,
who argued that for mechanical equilibrium a particle

requires d + 1 neighbors in d dimensions, but that sta-
bility of an assembly of (frictionless) particles requires
on average at least 2d neighbors [9–11]. Experimentally,
stable sphere packings occur for volume fractions ϕ rang-
ing from the so-called random loose packed (RLP) to the
random close packed (RCP) states. RCP is the densest
non-crystalline state for spheres, and although an exact
definition is lacking [12], experiments find ϕRCP ≃ 0.64
[13]. RLP is less well established, but recent experiments
suggest ϕRLP ≃ 0.55 [14]. Conceptually the limit of sta-
bility is when all particles are stabilized by a single con-
figuration of contacting neighbors [15, 16]. This state is
fragile and sensitive to non-compatible loads [17], which
renders reproducible experimentation (and thus compar-
ison of different systems or conditions) difficult.

An outstanding issue is the extent to which concen-
trated colloidal suspensions are similar to granular ma-
terials, i.e. whether the load-bearing properties of par-
ticulates for all Pe can be understood within a single
framework. Granular packings are stable at volume frac-
tions ϕRLP ≤ ϕ ≤ ϕRCP, while colloidal suspensions ex-
ist for arbitrarily small ϕ. However, colloids often ‘jam’
(develop the capacity to resist externally applied forces)
around ϕ ≃ 0.55 [18]. Additionally, how RLP, RCP, and
jamming relate to the glass transition in colloids [19], in
which all long-range motion ceases on experimental time
scales for ϕ ≥ ϕg (& 0.58 for hard spheres) is not clear. It
has been suggested that the colloidal glass transition does
not occur under reduced gravity [20, 21], implying that
glasses occur in systems intermediate between colloidal
and granular (Pe ∼ 1). Kegel summarized this in stat-
ing: ‘The important question that remains is if packings
can be identified that are present under normal gravity
but not under low gravity and vice versa’ [21]. In other
words, do different packings exist at different Pe?

In this Letter, we contribute towards resolving this is-
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FIG. 1: Bridge size distribution P (m) for 0.39<ϕ<0.60 for
the density-matched slightly soft spheres (a) and the non-
density-matched hard-spheres (b). (Only selected datasets
labeled for clarity.) The lines represent P (m)=α exp (−αm)
for α= {0.2, 0.3, 0.4, 0.5, 0.7, 0.9} in (a) and α= {0.2, 0.3} in
(b). Inset to b): P (m) for the density-matched (△) and the
non-density-matched (♢) samples, as well as a simulated gran-
ular material (+). All of these samples had ϕ ≃ 0.57. The
dashed line is P (m)=1.8m−2.

sue. We studied hard-sphere colloidal suspensions across
a range of low to moderate Pe (Pe ≈ 10−3 and Pe ≈ 4),
which was varied via the degree of density matching.
Confocal microscopy was used to record particle coor-
dinates to high accuracy [22], from which, based on
methods from granular simulations [4–8], we identified
bridges [23] and determined bridge size distributions. We
compared these with results from granular simulations
Pe ≫ 1. This reveals how load-bearing properties are
determined by external load. We also examine the role
of particle interactions and particle concentration. We
find that the concentrated systems studied feature a uni-
versal bridge size distribution independent of Pe, and
thus gravity, as well as particle interactions, provided
mean co-ordination number ⟨z⟩ rather than ϕ is used as
the control parameter. Our results indicate that bridge
structures are inherent to particulate systems, irrespec-
tive of whether a load is applied, and are thus not load
induced but exploited by loads. Bridges thus characterize
a particulate system’s ability to support a load.

We used sterically-stabilized poly-methylmethacrylate
particles (diameter 2R = 2.15 µm) which were fluores-
cently labeled with 7-nitrobenzo-2-oxa-1,3-diazole. In
cis-decalin, the particles behave as nearly hard spheres,
crystallizing at ϕ ≃ 0.50. The density mismatch with the
solvent results in a system intermediate between colloids
and granulars (Pe ≃ 4). The second solvent is a nearly-
density-matching mixture of cis-decalin and cycloheptyl-
bromide (≃ 74:26 by volume). Centrifugation for several
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FIG. 2: Mean bridge size ⟨m⟩ as a function of mean co-
ordination number ⟨z⟩ (and in the inset, of volume fraction
ϕ) for the density-matched soft spheres (△) and non-density-
matched hard spheres (♢).

days at 103g caused no observable sedimentation, so that
Pe ≃ 10−3; this system is colloidal. The solvent mixture
also nearly matches the particles’ refractive index, swells
the particles slightly, and induces a small charge [24],
which was screened by 1.2 mg/ml of tetrabutylammo-
nium chloride (Fluka), giving a Debye length . 100 nm
[24] and conferring a degree of softness to the interpar-
ticle potential: these particles crystallized at ϕ ≃ 0.41,
lower than for hard spheres (ϕf = 0.494).

We imaged the particles typically shortly after prepa-
ration using a fast confocal scanhead (Visitech VT-
Eye) and a Nikon TE300 inverted microscope, capturing
70 µm × 70 µm × 20 µm in around 3 s. Particle co-
ordinates were obtained using published procedures [22].
The mean Voronöı volume per particle and the known
particle radius allowed us to determine ϕ.

From the particle coordinates, bridges were identi-
fied using a procedure originating from the simulation
of granular matter [4–7] and recently adapted for exper-
imental data from colloidal samples [23]. Briefly, bridges
are defined as clusters of mutually stabilizing particles,
where ‘stable’ means particles do not move due to grav-
ity, and ‘mutual’ refers to the fact that bridge mem-
bers rely on each other for their stability; mutual or co-
operative stabilisations are necessary to explain stable
piles of various packing fraction [23]. During bridge find-
ing, neighbors were considered contacting if their centers
were within 2cR with the cutoff value c = 1.12, which
allowed for experimental uncertainties in the particle lo-
cation and polydispersity. Furthermore, the single sta-
bilizing subset for each stable particle was chosen based
on a ‘lowest mean-squared separation’ (LSQS) criterion,
which we have shown to compensate for the experimental
uncertainties already mentioned [23]. From the identified
contacting neighbors for each particle, we also calculated
the mean co-ordination number, ⟨z⟩.

Of primary interest is the bridge size distribution, i.e.,
the probability that a particle belongs to a bridge of
size m, P (m) = mN(m)/Ntot with N(m) the number
of bridges with m members and Ntot the total number
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FIG. 3: Mean co-ordination number ⟨z⟩ as a function of vol-
ume fraction ϕ for the density-matched soft (△) and non-
density-matched hard spheres (♢).

of stable particles. The P (m) obtained for various ϕ for
the slightly soft, low Pe and the hard, moderate Pe sys-
tems are given in Fig. 1. For a given moderate ϕ, the
P (m) for the two systems differ significantly, while for
high ϕ samples, they are quantitatively identical within
experimental uncertainty, Fig. 1.

In the slightly soft, low Pe system, Fig. 1a, P (m) no-
ticeably shifts upwards with ϕ until ϕ & 0.54, which is
also reflected in an increase in the mean bridge size, ⟨m⟩
(Fig. 2, inset). Thereafter, P (m) changes little, sug-
gesting that an underlying distribution P0(m) is achieved
for sufficiently high ϕ. For the hard, moderate Pe sys-
tem, P (m) hardly changes in the range 0.39 ≤ ϕ ≤ 0.60,
Fig. 1b, although there is a slight systematic increase in
⟨m⟩ with ϕ (Fig. 2, inset).

To compare the measured P (m) with a system in the
limit Pe ≫ 1, we simulated a granular packing following
published procedures [6]. Briefly, 2200 spheres (2R = 1)
in a (periodic) box with a 6× 6 square base were allowed
to form a deposit with ϕ ≃ 0.57 and mean co-ordination
number ⟨z⟩ ≃ 4.7 using a ‘drop-and-roll’ procedure de-
signed to capture mutual stabilizations. Significantly, we
obtained the same P (m) to within errors as the limit-
ing P0(m) found in both experimental systems, Fig. 1b,
inset. Differences at the highest m are artefacts [28].
These observations suggest an underlying general bridge
size distribution, P0(m), in densely packed soft and hard
spheres at all Pe, i.e. independent of the effect of gravity
and the system.

We compare the forms of our P (m) with those found
in simulations. Simple arguments suggest that at low
m, linear bridges dominate with P (m) = αe−αm, with
p = e−α the probability that an existing linear bridge
is extended from size m to m + 1 [4]. Above m ≃ 10,
linear bridges become unlikely and randomly-branched
bridges with P (m) ∝ m−τ are observed. The P (m) are
well described by P (m) = αe−αm over the whole range
of ϕ, albeit less well for large m, Figs. 1, 4 (inset). For
m & 10, the data are also consistent with P (m) ∝ m−τ

with τ ≃ 2 (Fig. 1). Thus, small bridges (m . 10) are
linear, while larger bridges (found only at large ϕ) might
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FIG. 4: Exponent α in the fit P (m) = αe−αm as a function
of ⟨z⟩ (and, in the inset, of ϕ) for the non-density-matched
hard- (♢) and density-matched slightly soft-spheres (△). The
right-hand axis shows the corresponding probability p = e−α.

be branched, in agreement with simulations [4, 7].

⟨m⟩, α, and the concentration above which P (m) ap-
proaches P0(m) are Pe- and interaction-dependent. How-
ever, the quite different ϕ-dependences of ⟨m⟩ and α for
the two systems collapse onto a single curve when plotted
vs. ⟨z⟩, Figs. 2, 4. This reveals that there is a universal
bridge structure distribution in these particulates, inde-
pendent of Pe and interaction, when measured as a func-
tion of ⟨z⟩. It is reasonable that ⟨z⟩ rather than ϕ controls
bridge statistics, since ϕ measures space filling while ⟨z⟩
reflects connectivity, which is necessary for load-bearing
ability. The function α(⟨z⟩) appears to asymptote to a
constant value at large ⟨z⟩, consistent with the approach
to the limiting distribution P0(m).

Having investigated the effect of the magnitude of the
gravitational force on P (m), we consider the sensitivity
of P (m) to the direction of the applied force. P (m) was
determined for a fully-sedimented non-density-matched
sample with ϕ ≈ 0.647, Fig. 5 (•). The coordinates
were then rotated electronically through 90◦ (�), as well
as inverted (�), and the analysis repeated, giving P (m)
perpendicular and opposite to the applied force, Fig. 5.
The P (m) are identical to within experimental error [29],
suggesting that potentially load-bearing structures, i.e.
bridges, are present independent of applied load. This
is consistent with bridge structures also being found in
dilute samples, where there is no ‘stability’ against grav-
ity and at low Pe where there is no significant gravi-
tational load. We conclude that bridge structures are
formed without applied load and are only exploited for
stability once a load is applied, and that bridge struc-
tures with the potential to support a load are inherent
to particulate systems across the whole range of Pe.

Lastly, we investigate the effect of crystallinity on
P (m) for samples with the same ⟨z⟩. We selected
some partially crystalline Pe ≃ 10−3 samples, as deter-
mined by the rotationally-invariant global orientational
order parameter Q6 [25–27], which we consider relative
to the value in a perfect face-centered cubic crystal,
QFCC

6 ≃ 0.57452. We determined P (m) for amorphous
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amorphous (Q6/Q
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FCC
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and 2.873±0.032 respectively), and for a non-density-matched
sample, ϕ ≈ 0.647, obtained in its natural orientation (•),
electronically rotated by 90◦ (�), and upside down, i.e. z
co-ordinates artificially inverted (�).

(Q6/Q
FCC
6 < 0.05) and crystalline (Q6/Q

FCC
6 > 0.70)

samples of similar ⟨z⟩ ≈ 2.9, Fig. 5. The two P (m) are
remarkably similar, indicating that the precise spatial
configuration of neighbors is not crucial as long as ⟨z⟩
is similar; this recommends closer investigation of the
importance of the angular distribution of neighbors.
In conclusion, we have studied the bridge size distri-

bution, P (m), in two model colloidal suspensions: hard
spheres at Pe ≃ 4 and slightly soft spheres at Pe ≃ 10−3.
The bridge statistics scale with the mean co-ordination
number, ⟨z⟩, rather than the volume fraction, ϕ. A

generic bridge size distribution, P0(m), is achieved for
⟨z⟩ & 5.0, which also agreed with P (m) for simulated
granular materials, and for different orientations of the
applied force. Moreover, amorphous and partially crys-
talline samples with the same ⟨z⟩ also showed the same
measured P (m). These observations are consistent with
the fact that the co-ordination number ⟨z⟩ reflects ‘con-
nectivity’, which is more important than space-filling,
i.e. the volume fraction ϕ. Connectedness, necessary for
one particle to transmit a force to another, depends not
only on the volume fraction ϕ, but also on the particle
interactions. Remarkably, this applies not only to the
limiting distribution P0(m), but also to the bridge size
distributions for dilute samples with markedly fewer con-
tacting neighbors, and density-matched samples where a
load is essentially absent. These ‘bridges’ can be neither
load-bearing nor load-induced. Inherent structures with
the potential to bear loads are formed without gravity
and then exploited by applied forces to provide stabil-
ity. Bridges thus characterize the load-bearing ability,
not the actual degree of load-bearing, of a packing. More
information might be extracted from the details of the in-
dividual stabilizations which lead to bridges. To answer
Kegel’s question [21], we do not find different structures
in packings with different degrees of applied load: the
same universal distribution of bridge structures is present
regardless of applied load.
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Recherches et Technologies d’Aubervilliers.
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