8,559 research outputs found

    Influence of spin waves on transport through a quantum-dot spin valve

    Full text link
    We study the influence of spin waves on transport through a single-level quantum dot weakly coupled to ferromagnetic electrodes with noncollinear magnetizations. Side peaks appear in the differential conductance due to emission and absorption of spin waves. We, furthermore, investigate the nonequilibrium magnon distributions generated in the source and drain lead. In addition, we show how magnon-assisted tunneling can generate a fullly spin-polarized current without an applied transport voltage. We discuss the influence of spin waves on the current noise. Finally, we show how the magnonic contributions to the exchange field can be detected in the finite-frequency Fano factor.Comment: published version, 15 pages, 10 figure

    Strong Tunneling and Coulomb Blockade in a Single-Electron Transistor

    Full text link
    We have developed a detailed experimental study of a single-electron transistor in a strong tunneling regime. Although weakened by strong charge fluctuations, Coulomb effects were found to persist in all samples including one with the effective conductance 8 times higher than the quantum value (6.45 kΩ\Omega)1^{-1}. A good agreement between our experimental data and theoretical results for the strong tunneling limit is found. A reliable operation of transistors with conductances 3-4 times larger than the quantum value is demonstrated.Comment: revtex, 4 page

    Conductance of the single-electron transistor: A comparison of experimental data with Monte Carlo calculations

    Full text link
    We report on experimental results for the conductance of metallic single-electron transistors as a function of temperature, gate voltage and dimensionless conductance. In contrast to previous experiments our transistor layout allows for a direct measurement of the parallel conductance and no ad hoc assumptions on the symmetry of the transistors are necessary. Thus we can make a comparison between our data and theoretical predictions without any adjustable parameter. Even for rather weakly conducting transistors significant deviations from the perturbative results are noted. On the other hand, path integral Monte Carlo calculations show remarkable agreement with experiments for the whole range of temperatures and conductances.Comment: 8 pages, 7 figures, revtex4, corrected typos, submitted to PR

    Aharonov-Bohm Interferometry with Interacting Quantum Dots: Spin Configurations, Asymmetric Interference Patterns, Bias-Voltage-Induced Aharonov-Bohm Oscillations, and Symmetries of Transport Coefficients

    Full text link
    We study electron transport through multiply-connected mesoscopic geometries containing interacting quantum dots. Our formulation covers both equilibrium and non-equilibrium physics. We discuss the relation of coherent transport channels through the quantum dot to flux-sensitive Aharonov-Bohm oscillations in the total conductance of the device. Contributions to transport in first and second order in the intrinsic line width of the dot levels are addressed in detail. We predict an interaction-induced asymmetry in the amplitude of the interference signal around resonance peaks as a consequence of incoherence associated with spin-flip processes. This asymmetry can be used to probe the total spin of the quantum dot. Such a probe requires less stringent experimental conditions than the Kondo effect, which provides the same information. We show that first-order contributions can be partially or even fully coherent. This contrasts with the sequential-tunneling picture, which describes first-order transport as a sequence of incoherent tunneling processes. We predict bias-voltage induced Aharonov-Bohm oscillations of physical quantities which are independent of flux in the linear-response regime. Going beyond the Onsager relations we analyze the relations between the space symmetry group of the setup and the flux-dependent non-linear conductance.Comment: 22 pages, 11 figure

    A new perturbation treatment applied to the transport through a quantum dot

    Full text link
    Resonant tunnelling through an Anderson impurity is investigated by employing a new perturbation scheme at nonequilibrium. This new approach gives the correct weak and strong coupling limit in UU by introducing adjustable parameters in the self-energy and imposing self-consistency of the occupation number of the impurity. We have found that the zero-temperature linear response conductance agrees well with that obtained from the exact sum rule. At finite temperature the conductance shows a nonzero minimum at the Kondo valley, as shown in recent experiments. The effects of an applied bias voltage on the single-particle density of states and on the differential conductances are discussed for Kondo and non-Kondo systems.Comment: 4 pages, 4 figures, submitted to PRB-Rapid Comm. Email addresses [email protected], [email protected]

    Collective character of spin excitations in a system of Mn2+^{2+} spins coupled to a two-dimensional electron gas

    Full text link
    We have studied the low energy spin excitations in n-type CdMnTe based dilute magnetic semiconductor quantum wells. For magnetic fields for which the energies for the excitation of free carriers and Mn spins are almost identical an anomalously large Knight shift is observed. Our findings suggests the existence of a magnetic field induced ferromagnetic order in these structures, which is in agreement with recent theoretical predictions [J. K{\"o}nig and A. H. MacDonald, submitted Phys. Rev. Lett. (2002)]Comment: 4 figure

    Charge Fluctuations in the Single Electron Box

    Full text link
    Quantum fluctuations of the charge in the single electron box are investigated. Based on a diagrammatic expansion we calculate the average island charge number and the effective charging energy in third order in the tunneling conductance. Near the degeneracy point where the energy of two charge states coincides, the perturbative approach fails, and we explicitly resum the leading logarithmic divergencies to all orders. The predictions for zero temperature are compared with Monte Carlo data and with recent renormalization group results. While good agreement between the third order result and numerical data justifies the perturbative approach in most of the parameter regime relevant experimentally, near the degeneracy point and at zero temperature the resummation is shown to be insufficient to describe strong tunneling effects quantitatively. We also determine the charge noise spectrum employing a projection operator technique. Former perturbative and semiclassical results are extended by the approach.Comment: 20 pages, 15 figure

    Probing Entanglement and Non-locality of Electrons in a Double-Dot via Transport and Noise

    Full text link
    Addressing the feasibilty of quantum communication with electrons we consider entangled spin states of electrons in a double-dot which is weakly coupled to in--and outgoing leads. We show that the entanglement of two electrons in the double-dot can be detected in mesoscopic transport and noise measurements. In the Coulomb blockade and cotunneling regime the singlet and triplet states lead to phase-coherent current and noise contributions of opposite signs and to Aharonov-Bohm and Berry phase oscillations in response to magnetic fields. These oscillations are a genuine two-particle effect and provide a direct measure of non-locality in entangled states. We show that the ratio of zero-frequency noise to current (Fano factor) is universal and equal to the electron charge.Comment: 4 double-column pages, REVTeX, 1 eps figure embedded with epsf, equations adde

    Underscreened Kondo effect in S=1 magnetic quantum dots: Exchange, anisotropy and temperature effects

    Get PDF
    We present a theoretical analysis of the effects of uniaxial magnetic anisotropy and contact-induced exchange field on the underscreened Kondo effect in S=1 magnetic quantum dots coupled to ferromagnetic leads. First, by using the second-order perturbation theory we show that the coupling to spin-polarized electrode results in an effective exchange field BeffB_{\rm eff} and an effective magnetic anisotropy DeffD_{\rm eff}. Second, we confirm these findings by using the numerical renormalization group method, which is employed to study the dependence of the quantum dot spectral functions, as well as quantum dot spin, on various parameters of the system. We show that the underscreened Kondo effect is generally suppressed due to the presence of effective exchange field and can be restored by tuning the anisotropy constant, when Deff=Beff|D_{\rm eff}| = |B_{\rm eff}|. The Kondo effect can also be restored by sweeping an external magnetic field, and the restoration occurs twice in a single sweep. From the distance between the restored Kondo resonances one can extract the information about both the exchange field and the effective anisotropy. Finally, we calculate the temperature dependence of linear conductance for the parameters where the Kondo effect is restored and show that the restored Kondo resonances display a universal scaling of S=1/2S=1/2 Kondo effect.Comment: 13 pages, 9 figures (version as accepted for publication in Physical Review B
    corecore