3,801 research outputs found

    Predictability of reset switching voltages in unipolar resistance switching

    Full text link
    In unipolar resistance switching of NiO capacitors, Joule heating in the conducting channels should cause a strong nonlinearity in the low resistance state current-voltage (I-V) curves. Due to the percolating nature of the conducting channels, the reset current IR, can be scaled to the nonlinear coefficient Bo of the I-V curves. This scaling relationship can be used to predict reset voltages, independent of NiO capacitor size; it can also be applied to TiO2 and FeOy capacitors. Using this relation, we developed an error correction scheme to provide a clear window for separating reset and set voltages in memory operations

    Direct observation of the proliferation of ferroelectric loop domains and vortex-antivortex pairs

    Full text link
    We discovered "stripe" patterns of trimerization-ferroelectric domains in hexagonal REMnO3 (RE=Ho, ---, Lu) crystals (grown below ferroelectric transition temperatures (Tc), reaching up to 1435 oC), in contrast with the vortex patterns in YMnO3. These stripe patterns roughen with the appearance of numerous loop domains through thermal annealing just below Tc, but the stripe domain patterns turn to vortex-antivortex domain patterns through a freezing process when crystals cross Tc even though the phase transition appears not to be Kosterlitz-Thouless-type. The experimental systematics are compared with the results of our six-state clock model simulation and also the Kibble-Zurek Mechanism for trapped topological defects

    Granular Scale Magnetic Flux Cancellations in the Photosphere

    Full text link
    We investigate the evolution of 5 granular-scale magnetic flux cancellations just outside the moat region of a sunspot by using accurate spectropolarimetric measurements and G-band images with the Solar Optical Telescope aboard Hinode. The opposite polarity magnetic elements approach a junction of the intergranular lanes and then they collide with each other there. The intergranular junction has strong red shifts, darker intensities than the regular intergranular lanes, and surface converging flows. This clearly confirms that the converging and downward convective motions are essential for the approaching process of the opposite-polarity magnetic elements. However, motion of the approaching magnetic elements does not always match with their surrounding surface flow patterns in our observations. This suggests that, in addition to the surface flows, subsurface downward convective motions and subsurface magnetic connectivities are important for understanding the approach and collision of the opposite polarity elements observed in the photosphere. We find that the horizontal magnetic field appears between the canceling opposite polarity elements in only one event. The horizontal fields are observed along the intergranular lanes with Doppler red shifts. This cancellation is most probably a result of the submergence (retraction) of low-lying photospheric magnetic flux. In the other 4 events, the horizontal field is not observed between the opposite polarity elements at any time when they approach and cancel each other. These approaching magnetic elements are more concentrated rather than gradually diffused, and they have nearly vertical fields even while they are in contact each other. We thus infer that the actual flux cancellation is highly time dependent events at scales less than a pixel of Hinode SOT (about 200 km) near the solar surface.Comment: Accepted for publication in the Astrophysical Journa

    Strong lens search in the ESO public Survey KiDS

    Get PDF
    We have started a systematic search of strong lens candidates in the ESO public survey KiDS based on the visual inspection of massive galaxies in the redshift range 0.1<z<0.50.1<z<0.5. As a pilot program we have inspected 100 sq. deg., which overlap with SDSS and where there are known lenses to use as a control sample. Taking advantage of the superb image quality of VST/OmegaCAM, the colour information and accurate model subtracted images, we have found 18 new lens candidates, for which spectroscopic confirmation will be needed to confirm their lensing nature and study the mass profile of the lensing galaxies.Comment: 4 pages, 1 figure, to appear on the refereed Proceeding of the "The Universe of Digital Sky Surveys" conference held at the INAF--OAC, Naples, on 25th-28th november 2014, to be published on Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic

    Deconstructing active region AR10961 using STEREO, HINODE, TRACE and SOHO

    Get PDF
    Active region 10961 was observed over a five day period (2007 July 2-6) by instrumentation on-board STEREO, Hinode, TRACE and SOHO. As it progressed from Sun centre to the solar limb a comprehensive analysis of the EUV, X-ray and magnetic field data reveals clearly observable changes in the global nature of the region. Temperature analyses undertaken using STEREO EUVI double filter ratios and XRT single and combined filter ratios demonstrate an overall cooling of the region from between 1.6 - 3.0 MK to 1.0 - 2.0 MK over the five days. Similarly, Hinode EIS density measurements show a corresponding increase in density of 27%. Moss, cool (1 MK) outer loop areas and hotter core loop regions were examined and compared with potential magnetic field extrapolations from SOHO MDI magnetogram data. In particular it was found that the potential field model was able to predict the structure of the hotter X-ray loops and that the larger cool loops seen in 171 Angstrom images appeared to follow the separatrix surfaces. The reasons behind the high density moss regions only observed on one side of the active region are examined further

    Improved Iterative Coordinated Beamforming Based on Singular Value Decomposition for Multiuser Mimo Systems With Limited Feedforward

    Get PDF
    Coordinated beamforming based on singular value decomposition is an iterative method to jointly optimize thetransmit beamformers and receive combiners, to achieve high levels of sum rates in the downlink of multiusersystems, by exploiting the multi-dimensional wireless channel created by multiple transmit and receive antennas. The optimization is done at the base station and the quantized beamformers are sent to the users through a low rate link.In this work, we propose to optimize this algorithm by reducing the number of iterations and improving its uncoded bit error rate performance. Simulation results show that our proposal achieves a better bit error rate with a lower number of iterations than the original algorithm

    Electronic structure studies of Fe- ZnO nanorods by x-ray absorption fine structure

    Full text link
    We report the electronic structure studies of well characterized polycrystalline Zn_{1-x}Fe_xO (x = 0.0, 0.01, 0.03, and 0.05) nanorods synthesized by a co-precipitation method through x-ray absorption fine structure (XAFS). X-ray diffraction (XRD) reveals that Fe doped ZnO crystallizes in a single phase wurtzite structure without any secondary phase. From the XRD pattern, it is observed that peak positions shift towards lower 2\theta value with Fe doping. The change in the peak positions with increase in Fe contents clearly indicates that Fe ions are replacing Zn ions in the ZnO matrix. Linear combination fittings (LCF) at Fe K-edge demonstrate that Fe is in mixed valent state (Fe3+/Fe2+) with a ratio of ~ 7:3 (Fe3+:Fe2+). XAFS data is successfully fitted to wurtzite structure using IFEFFIT and Artemis. The results indicate that Fe substitutes Zn site in the ZnO matrix in tetrahedral symmetry.Comment: 7 pages, 5 figures, 2 tables, regular articl

    A compact and reconfigurable silicon nitride time-bin entanglement circuit

    Get PDF
    Photonic chip based time-bin entanglement has attracted significant attention because of its potential for quantum communication and computation. Useful time-bin entanglement systems must be able to generate, manipulate and analyze entangled photons on a photonic chip for stable, scalable and reconfigurable operation. Here we report the first time-bin entanglement photonic chip that integrates time-bin generation, wavelength demultiplexing and entanglement analysis. A two-photon interference fringe with an 88.4% visibility is measured (without subtracting any noise), indicating the high performance of the chip. Our approach, based on a silicon nitride photonic circuit, which combines the low-loss characteristic of silica and tight integration features of silicon, paves the way for scalable real-world quantum information processors.Comment: 4 pages, 5 figure

    Collective magnetism at multiferroic vortex domain walls

    Full text link
    Topological defects have been playgrounds for many emergent phenomena in complex matter such as superfluids, liquid crystals, and early universe. Recently, vortex-like topological defects with six interlocked structural antiphase and ferroelectric domains merging into a vortex core were revealed in multiferroic hexagonal manganites. Numerous vortices are found to form an intriguing self-organized network. Thus, it is imperative to find out the magnetic nature of these vortices. Using cryogenic magnetic force microscopy, we discovered unprecedented alternating net moments at domain walls around vortices that can correlate over the entire vortex network in hexagonal ErMnO3 The collective nature of domain wall magnetism originates from the uncompensated Er3+ moments and the correlated organization of the vortex network. Furthermore, our proposed model indicates a fascinating phenomenon of field-controllable spin chirality. Our results demonstrate a new route to achieving magnetoelectric coupling at domain walls in single-phase multiferroics, which may be harnessed for nanoscale multifunctional devices.Comment: 18 pages, 10 figure
    corecore