9,425 research outputs found
Probing Exotic Physics With Cosmic Neutrinos
Traditionally, collider experiments have been the primary tool used in
searching for particle physics beyond the Standard Model. In this talk, I will
discuss alternative approaches for exploring exotic physics scenarios using
high energy and ultra-high energy cosmic neutrinos. Such neutrinos can be used
to study interactions at energies higher, and over baselines longer, than those
accessible to colliders. In this way, neutrino astronomy can provide a window
into fundamental physics which is highly complementary to collider techniques.
I will discuss the role of neutrino astronomy in fundamental physics,
considering the use of such techniques in studying several specific scenarios
including low scale gravity models, Standard Model electroweak instanton
induced interactions, decaying neutrinos and quantum decoherence.Comment: 11 pages, 6 figures; For the proceedings of From Colliders To Cosmic
Rays, Prague, Czech Republic, September 7-13, 200
Neutrophil gelatinase-associated lipocalin: its response to hypoxia and association with acute mountain sickness.
Acute Mountain Sickness (AMS) is a common clinical challenge at high altitude (HA). A point-of-care biochemical marker for AMS could have widespread utility. Neutrophil gelatinase-associated lipocalin (NGAL) rises in response to renal injury, inflammation and oxidative stress. We investigated whether NGAL rises with HA and if this rise was related to AMS, hypoxia or exercise. NGAL was assayed in a cohort (n = 22) undertaking 6 hours exercise at near sea-level (SL); a cohort (n = 14) during 3 hours of normobaric hypoxia (FiO2 11.6%) and on two trekking expeditions (n = 52) to over 5000 m. NGAL did not change with exercise at SL or following normobaric hypoxia. During the trekking expeditions NGAL levels (ng/ml, mean ± sd, range) rose significantly (P < 0.001) from 68 ± 14 (60-102) at 1300 m to 183 ± 107 (65-519); 143 ± 66 (60-315) and 150 ± 71 (60-357) at 3400 m, 4270 m and 5150 m respectively. At 5150 m there was a significant difference in NGAL between those with severe AMS (n = 7), mild AMS (n = 16) or no AMS (n = 23): 201 ± 34 versus 171 ± 19 versus 124 ± 12 respectively (P = 0.009 for severe versus no AMS; P = 0.026 for mild versus no AMS). In summary, NGAL rises in response to prolonged hypobaric hypoxia and demonstrates a relationship to the presence and severity of AMS
Two photon annihilation of Kaluza-Klein dark matter
We investigate the fermionic one-loop cross section for the two photon
annihilation of Kaluza-Klein (KK) dark matter particles in a model of universal
extra dimensions (UED). This process gives a nearly mono-energetic gamma-ray
line with energy equal to the KK dark matter particle mass. We find that the
cross section is large enough that if a continuum signature is detected, the
energy distribution of gamma-rays should end at the particle mass with a peak
that is visible for an energy resolution of the detector at the percent level.
This would give an unmistakable signature of a dark matter origin of the
gamma-rays, and a unique determination of the dark matter particle mass, which
in the case studied should be around 800 GeV. Unlike the situation for
supersymmetric models where the two-gamma peak may or may not be visible
depending on parameters, this feature seems to be quite robust in UED models,
and should be similar in other models where annihilation into fermions is not
helicity suppressed. The observability of the signal still depends on largely
unknown astrophysical parameters related to the structure of the dark matter
halo. If the dark matter near the galactic center is adiabatically contracted
by the central star cluster, or if the dark matter halo has substructure
surviving tidal effects, prospects for detection look promising.Comment: 17 pages, 3 figures; slightly revised versio
Ergodic directions for billiards in a strip with periodically located obstacles
We study the size of the set of ergodic directions for the directional
billiard flows on the infinite band with periodically placed
linear barriers of length . We prove that the set of ergodic
directions is always uncountable. Moreover, if is rational
the Hausdorff dimension of the set of ergodic directions is greater than 1/2.
In both cases (rational and irrational) we construct explicitly some sets of
ergodic directions.Comment: The article is complementary to arXiv:1109.458
Should psychiatrists 'Google' their patients?
Since its beginnings in the 1980s the internet has come to shape our everyday lives, but doctors still seem rather afraid of it. This anxiety may be explained by the fact that researchers and regulatory bodies focus less on the way that the internet can be used to enhance clinical work and more on the potential and perceived risks that this technology poses in terms of boundary violations and accidental breaches of confidentiality. Some aspects of the internet’s impact on medicine have been better researched than others, for example, whether email communication, social media and teleconferencing psychotherapy could be used to improve the
delivery of care. However, few authors have considered the specific issue of searching online for information about patients and much of the guidance published by regulatory organisations eludes this issue. In this article we provide clinical examples where the question ‘should I Google the patient?’ may arise and present questions for future research
Leptons and photons at the LHC: cascades through spinless adjoints
We study the hadron collider phenomenology of (1,0) Kaluza-Klein modes along
two universal extra dimensions compactified on the chiral square. Cascade
decays of spinless adjoints proceed through tree-level 3-body decays involving
leptons as well as one-loop 2-body decays involving photons. As a result,
spectacular events with as many as six charged leptons, or one photon plus four
charged leptons are expected to be observed at the LHC. Unusual events with
relatively large branching fractions include three leptons of same charge plus
one lepton of opposite charge, or one photon plus two leptons of same charge.
We estimate the current limit from the Tevatron on the compactification scale,
set by searches for trilepton events, to be around 270 GeV.Comment: 33+1 pages, 14 figure
Determining the WIMP mass using the complementarity between direct and indirect searches and the ILC
We study the possibility of identifying dark matter properties from
XENON-like 100 kg experiments and the GLAST satellite mission. We show that
whereas direct detection experiments will probe efficiently light WIMPs, given
a positive detection (at the 10% level for GeV), GLAST
will be able to confirm and even increase the precision in the case of a NFW
profile, for a WIMP-nucleon cross-section
pb. We also predict the rate of production of a WIMP in the next generation of
colliders (ILC), and compare their sensitivity to the WIMP mass with the XENON
and GLAST projects.Comment: 32 pages, new figures and a more detailed statistical analysis. Final
version to appear in JCA
Wind-profiler observations of gravity waves produced by convection at mid-latitudes
This work presents a case study which includes regions of large rapidly varying vertical velocities observed by a VHF wind-profiler at Aberystwyth (52.4° N, 4.1° W). Analysis indicates that this region is associated with gravity waves above the tropopause level and simultaneous regions of convective activity below the tropopause level. This case study also suggests that convective activity can be identified effectively by finding periods of large uncertainties on the derived velocities. These regions are hypothesized to be related to regions of small-scale inhomogeneity in the wind field. Examination suggests that the large vertical velocity fluctuations above these convective regions are short period gravity wave packets as expected from theory. In addition the vertical flux of the horizontal momentum associated with the gravity waves also displays the pattern of reversal observed in previous studies
Multiple effects of ice load changes and associated stress change on magmatic systems
Ice retreat on volcanoes reduces pressure at the surface of the Earth and induces stress changes in magmatic systems. The consequences can include increased generation of magma at depth, increased magma capture in the crust, and modification of failure conditions of magma chambers. We review the methodology to evaluate each of these effects, and consider the influence of ongoing ice retreat on volcanoes at the Mid-Atlantic divergent plate boundary in Iceland. Evaluation of each of these effects requires a series of assumptions regarding the rheology of the crust and mantle, and the nature of magmatic systems, contributing to relatively large uncertainty in response of a magmatic system to climate warming and associated ice retreat. Pressure release melting due to ice cap retreat in Iceland may at present times generate a similar amount of magma as plate tectonic processes; larger than realized previously. However, new modelling shows that part of this magma may be captured in the crust, rather than being erupted. Gradual retreat of ice caps do steadily modify failure conditions at magma chambers, which is highly dependent on their geometry and depth, as well as the details of ice load variations. A model is presented where long-term ice retreat at Katla volcano decreases the likelihood of eruption, as more magma is needed in the magma chamber to cause failure than in the absence of the ice retreat
- …
