233 research outputs found

    The Haroche-Ramsey experiment as a generalized measurement

    Get PDF
    A number of atomic beam experiments, related to the Ramsey experiment and a recent experiment by Brune et al., are studied with respect to the question of complementarity. Three different procedures for obtaining information on the state of the incoming atom are compared. Positive operator-valued measures are explicitly calculated. It is demonstrated that, in principle, it is possible to choose the experimental arrangement so as to admit an interpretation as a joint non-ideal measurement yielding interference and ``which-way'' information. Comparison of the different measurements gives insight into the question of which information is provided by a (generalized) quantum mechanical measurement. For this purpose the subspaces of Hilbert-Schmidt space, spanned by the operators of the POVM, are determined for different measurement arrangements and different values of the parameters.Comment: REVTeX, 22 pages, 5 figure

    Quantum state tomography using a single apparatus

    Full text link
    The density matrix of a two-level system (spin, atom) is usually determined by measuring the three non-commuting components of the Pauli vector. This density matrix can also be obtained via the measurement data of two commuting variables, using a single apparatus. This is done by coupling the two-level system to a mode of radiation field, where the atom-field interaction is described with the Jaynes--Cummings model. The mode starts its evolution from a known coherent state. The unknown initial state of the atom is found by measuring two commuting observables: the population difference of the atom and the photon number of the field. We discuss the advantages of this setup and its possible applications.Comment: 7 pages, 8 figure, Phys. Rev.

    Joint measurements of spin, operational locality and uncertainty

    Get PDF
    Joint, or simultaneous, measurements of non-commuting observables are possible within quantum mechanics, if one accepts an increase in the variances of the jointly measured observables. In this paper, we discuss joint measurements of a spin 1/2 particle along any two directions. Starting from an operational locality principle, it is shown how to obtain a bound on how sharp the joint measurement can be. We give a direct interpretation of this bound in terms of an uncertainty relation.Comment: Accepted for publication in Phys. Rev.

    Het vaststellen van de mate van religieuze tolerantie bij leraren in opleiding

    Get PDF
    In recent years, schools and education authorities worldwide have been paying increased attention to issues surrounding diversity and religious tolerance. Tolerance constitutes one of the most important preconditions for social justice, fairness and peaceful coexistence. Hence, the authors of this article decided to develop an instrument measuring the degree and nature of religious tolerance among student teachers. It is not this article’s purpose to enter into a discussion about how to actually resolve religious, cultural and political conflict, but merely to embark on the process of developing an instrument to measure the degree of religious tolerance among teachers and student teachers.Religious intolerance is increasingly viewed as problematic, and it appears that education has been assigned the role of inculcating religious tolerance in young people. Teachers are expected to be able to inculcate in their students the respect, empathy, critical thinking and acceptance of differences among people associated with the notion of tolerance. To be able to do this, teachers have to possess the traits of a tolerant person.Whether teachers are indeed tolerant in practice depends on the extent to which they have mastered the capacity to be tolerant. This article reports on a study that culminated in the construction of a questionnaire for measuring the degree to which students on the threshold of entering the teaching profession displayed a tolerant attitude.The construction of the questionnaire was based on a theoretical study of tolerance and intolerance. The questionnaire was then applied in three different countries (South Africa, the Netherlands and India). Factor analyses were performed on the data to establish the validity of the instrument. The first round of application revealed a number of shortcomings in the questionnaire. The study therefore recommends a revision of the questionnaire. Among other things, the factoral structure and the reliability of some of the sub-scales require further attention. The study ascribes the lower than expected explanation of variance in the data set to the cultural differences existing among the different groups of respondents in the three countries.The article closes by drawing a conclusion regarding the degree of religious tolerance among the respondents who participated in this first round of application of the questionnaire

    Joint measurements and Bell inequalities

    Get PDF
    Joint quantum measurements of non-commuting observables are possible, if one accepts an increase in the measured variances. A necessary condition for a joint measurement to be possible is that a joint probability distribution exists for the measurement. This fact suggests that there may be a link with Bell inequalities, as these will be satisfied if and only if a joint probability distribution for all involved observables exists. We investigate the connections between Bell inequalities and conditions for joint quantum measurements to be possible. Mermin's inequality for the three-particle Greenberger-Horne-Zeilinger state turns out to be equivalent to the condition for a joint measurement on two out of the three quantum systems to exist. Gisin's Bell inequality for three co-planar measurement directions, meanwhile, is shown to be less strict than the condition for the corresponding joint measurement

    On the Consequences of Retaining the General Validity of Locality in Physical Theory

    Full text link
    The empirical validity of the locality (LOC) principle of relativity is used to argue in favour of a local hidden variable theory (HVT) for individual quantum processes. It is shown that such a HVT may reproduce the statistical predictions of quantum mechanics (QM), provided the reproducibility of initial hidden variable states is limited. This means that in a HVT limits should be set to the validity of the notion of counterfactual definiteness (CFD). This is supported by the empirical evidence that past, present, and future are basically distinct. Our argumentation is contrasted with a recent one by Stapp resulting in the opposite conclusion, i.e. nonlocality or the existence of faster-than-light influences. We argue that Stapp's argumentation still depends in an implicit, but crucial, way on both the notions of hidden variables and of CFD. In addition, some implications of our results for the debate between Bohr and Einstein, Podolsky and Rosen are discussed.Comment: revtex, 11 page

    Brownian Entanglement

    Get PDF
    We show that for two classical brownian particles there exists an analog of continuous-variable quantum entanglement: The common probability distribution of the two coordinates and the corresponding coarse-grained velocities cannot be prepared via mixing of any factorized distributions referring to the two particles in separate. This is possible for particles which interacted in the past, but do not interact in the present. Three factors are crucial for the effect: 1) separation of time-scales of coordinate and momentum which motivates the definition of coarse-grained velocities; 2) the resulting uncertainty relations between the coordinate of the brownian particle and the change of its coarse-grained velocity; 3) the fact that the coarse-grained velocity, though pertaining to a single brownian particle, is defined on a common context of two particles. The brownian entanglement is a consequence of a coarse-grained description and disappears for a finer resolution of the brownian motion. We discuss possibilities of its experimental realizations in examples of macroscopic brownian motion.Comment: 18 pages, no figure

    Quantum Locality

    Full text link
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is no reason to suspect any conflict between quantum theory and special relativity.Comment: Introduction has been revised, references added, minor corrections elsewhere. To appear in Foundations of Physic
    corecore