54 research outputs found

    Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland

    Get PDF
    The Ministry of Mineral Resources and Labour, Greenland Government supported field and analytical work. NJG acknowledges support from Australian Research Council grant FL160100168.Different geodynamic models exist for the growth and differentiation of Archean continental crust, ranging from horizontal tectonics with subduction zones to vertical tectonics with foundering of greenstone sequences. U–Pb zircon geochronology, field relationships, and pressure–temperature constraints from granulite-facies metabasite of the Akia Terrane of the North Atlantic Craton in West Greenland show that this terrane grew through two major magmatic growth episodes: an earlier one at c. 3.2 Ga, and a later one at c. 3.05–2.97 Ga. Phase equilibrium modelling for assemblages related to the latter indicates temperatures of >800 °C at 0.8 GPa in the stability field of garnet. U–Pb zircon geochronology and existing Hf isotope data are also consistent with a model involving protracted Mesoarchean magmatic growth with limited mantle addition during a prolonged period of high temperatures in a relatively stagnant tectonic regime prior to Neoarchean compressional tectonism in the Akia Terrane.Publisher PDFPeer reviewe

    Accessory Mineral Eu Anomalies in Suprasolidus Rocks: Beyond Feldspar

    Full text link
    Accessory mineral Eu anomalies (Eu/Eu*) are routinely measured to infer changes in the amount of feldspar over time, allowing accessory mineral U‐Pb dates to be linked to the progressive crystallization of igneous and metamorphic rocks and, by extension, geodynamic processes. However, changes in Eu/Eu* can reflect any process that changes the relative availability of Eu2+ and Eu3+. We constructed partitioning budgets for Sm, Eu2+, Eu3+, and Gd in suprasolidus metasedimentary rocks to investigate processes that can influence accessory mineral Eu anomalies. We modeled three scenarios: (1) closed‐system, equilibrium crystallization; (2) fractionation of Eu by feldspar growth during melt crystallization; and (3) removal of Eu by melt extraction. In the closed‐system equilibrium model, accessory mineral Eu/Eu* changes as a function of fO2 and monazite stability; Eu/Eu* changes up to 0.3 over a pressure‐temperature range of 4–12 kbar and 700–950°C. Fractionation of Eu by feldspar growth is modeled to decrease accessory mineral Eu/Eu* by ~0.05–0.15 per 10 wt% feldspar crystallized. Melt extraction has a smaller effect; removal of 10% melt decreases accessory mineral Eu/Eu* in the residue by ≀0.05. Although these models demonstrate that fractionation of Eu by feldspar growth can be a dominant control on a rocks u budget, they also show that the common interpretation that Eu/Eu* only records feldspar growth and breakdown is an oversimplification that could lead to incorrect interpretation about the duration and rates of tectonic processes. Consideration of other processes that influence Eu anomalies will allow for a broader range of geological processes to be investigated by petrochronology.Plain Language SummaryMetamorphic rocks—rocks in which new minerals grew in response to increase in pressure and temperature related to deep burial or subduction—and igneous rocks—rocks that formed as magmas cool and crystallize—provide a direct record of how Earth’s continents have moved and changed through time. To read this record, geologists need to be able to measure the ages of metamorphism and magmatism: When did it happen? How long did it last? How does it relate to other rocks around the world? A common approach to addressing these questions is using U‐Pb dating of the minerals zircon, monazite, and apatite. The elements these minerals incorporate are indicative of how hot and how deep in the Earth they were when they grew. In this study we explore how geologists can use the concentrations of the element Europium (Eu) in these minerals to provide new insights into the geological meaning of U‐Pb dates, leading to more robust interpretations of Earth’s plate tectonic history.Key PointsEu anomalies in suprasolidus rocks record any process that changes the relative availability of Eu2+ and Eu3+, not just feldspar growthDisequilibrium is required for feldspar growth to strongly influence accessory mineral Eu anomaliesComparing accessory mineral Eu anomalies and Sr concentrations leads to more robust interpretation than evaluating Eu anomalies alonePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156481/1/ggge22268_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156481/3/ggge22268.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156481/2/ggge22268-sup-0001-2020GC009052-Text_SI-S01.pd

    Apatite: a U-Pb thermochronometer or geochronometer?

    Get PDF
    Apatite is an accessory mineral that is frequently found in both igneous and clastic sedimentary rocks. It is conventionally considered to be characterized by a closure temperature range between 375 and 600 °C and hence has been employed to address mid-temperature thermochronology questions relevant to the reconstruction of thermal events in the middle to lower crust. However, questions remain as to whether apatite faithfully records thermally-activated volume diffusion profiles, or rather is influenced by recrystallization and new growth processes. We present a case study of two apatite samples from the Akia Terrane in Greenland that help chart some of the post magmatic history of this region. Apatite in a tonalitic gneiss has distinct U-enriched rims and its U-Pb apparent ages correlate with Mn chemistry, with a high Mn group yielding an age of c. 2813 Ma. The U-Pb and trace element chemistry and morphology support an interpretation in which these apatite crystals are originally igneous and record cooling after metamorphism, with subsequent generation of discrete new rims. Epidote observed in the sample implies a <600 °C fluid infiltration event associated with apatite rims. The second sample, from a granitic leucosome, contains apparently homogeneous apatite, however U-Pb analyses define two distinct discordia arrays with different common Pb components. An older, c. 2490 Ma, component is associated with elevated Sr, whereas a younger, c. 1800 Ma, component has lower Sr concentration. A depth profile reveals an older core with progressively younger ages towards a compositionally discrete late Paleoproterozoic rim. The chemical and age profiles do not directly correspond, implying different diffusion rates between trace elements and U and Pb. The variation in core ages is interpreted to reflect radiogenic-Pb loss from a metamorphic population during new rim growth. The younger, c. 1800 Ma U-Pb age is interpreted to date new apatite growth from a compositionally distinct reservoir driven by tectonothermal and fluid activity, consistent with regional mica Ar-Ar ages. Results from these two samples show that recrystallization, dissolution and regrowth processes likely formed the younger rim overgrowths, and at temperatures below those often considered to be closure temperatures for Pb diffusion in apatite. The results from these samples imply many apatite grains may not record simple thermally activated Pb diffusion profiles and cautions against inversion of apatite U-Pb data to thermal histories without detailed knowledge of the grain growth/alteration processes

    Titanite petrochronology linked to phase equilibrium modelling constrains tectono-thermal events in the Akia Terrane, West Greenland

    Get PDF
    GeoHistory Facility instruments (part of the John de Laeter Centre) were funded via an Australian Geophysical Observing System (AGOS) grant provided to AuScope by the AQ44 Australian Education Investment Fund.The Mesoarchean Akia Terrane in West Greenland contains a detailed magmatic and metamorphic mineral growth record from 3.2 Ga to at least c. 2.5 Ga. This time span makes this region an important case study in the quest to track secular changes in geodynamic style which may ultimately inform on the development of plate tectonics as a globally linked system of lateral rigid plate motions. The common accessory mineral titanite has recently become recognised as a powerful high temperature geochronometer whose chemistry may chart the thermal conditions of its growth. Furthermore, titanite offers the potential to record the time-temperature history of mafic lithologies, which may lack zircon. Although titanite suffers from higher levels of common Pb than many other UPb chronometers, we show how measurement of 207Pb/206Pb in texturally coeval biotite may assist in the characterization of the appropriate common Pb composition in titanite. Titanite extracted from two samples of mafic gneisses from the Akia Terrane both yield UPb ages of c. 2.54 Ga. Although coeval, their chemistry implies growth under two distinctly different processes. In one case, the titanite has elevated total REE, high Th/U and grew from an in-situ partial melt, consistent with an identical date to granite dyke zircon. In contrast, the second titanite sample contains greater common Pb, lower total REE, lower Th/U, and grew from dominantly hydrothermal fluids. Zr-in-titanite thermometry for partial melt-derived titanite, with activities constrained by phase equilibrium modelling, indicates maxima of c. 690 °C. Elsewhere in the Akia Terrane, coeval metamorphism linked to growth of hydrothermal titanite is estimated at temperatures of c. 670 °C. These new results when coupled with existing findings indicate punctuated, repeated metamorphic events in the Akia Terrane, in which high temperature conditions (re)occurred at least three times between 3.0 and 2.5 Ga, but crucially changed in style across a c. 3.0 Ga change point. We interpret this change in metamorphism as reflecting a fundamental shift in geodynamic style in West Greenland at 3.0 Ga, consistent with other estimates for the onset of widespread plate tectonic-type processes.Publisher PDFPeer reviewe

    Revisiting the discrimination and distribution of S-type granites from zircon trace element composition

    Get PDF
    Trace element compositions of zircon can be used to estimate the chemistry of their host magmas; as such they provide a useful tool in zircon provenance, and in the assessment of changing magma chemistries in time and space. Granites derived from the melting of sedimentary protoliths (S-types) have previously been discriminated by their P contents and P vs. REE+Y correlations, largely based on data from the Lachlan Fold Belt. Using a range of magmatic suites from different locations, we show that this discrimination commonly fails to discriminate S-type granite from others. We propose an alternative discrimination tool, based on a plot of Ce/U vs. Th/U, which makes use of low LREE/U and Th/U in metapelite-derived melts. Through coupled thermodynamic and accessory mineral saturation modelling, we demonstrate that these low ratios can be explained by monazite co-crystallisation. We demonstrate that Himalayan S-types, which are inferred to have formed from partial melting of metapelite, and thus can be classified as pure S-types, exhibit the lowest Ce/U and Th/U ratios, and overlap those of metapelitic zircon. Granites formed in oceanic arcs (I-types) and mantle-derived suites both have the highest Ce/U and Th/U ratios. Other S-types, such as those known to have mixed sedimentary and igneous protoliths, which we term Hybrid S-types, form a field overlapping pure I- and S-types. We use Ce/U versus Th/U to demonstrate the dominant I-type origin to early Earth (>3.6 Ga) zircon, and using a large detrital zircon database we assess the proportion of S-type zircon through Earth history. In contrast to previous findings, we find that the supercontinent Rodinia had a normal abundance of S-type zircon, as with other supercontinents, and that instead the period 1.7–1.2 Ga exhibits a marked low in S-type zircon, corresponding to fewer continental collisions

    Building Mesoarchaean crust upon Eoarchaean roots : the Akia Terrane, West Greenland

    Get PDF
    The Maniitsoq project is supported by the Ministry of Mineral Resources and Labour, Government of Greenland. NJG thanks Curtin University and Australian Research Council grant FL160100168 for financial support.Constraining the source, genesis, and evolution of Archaean felsic crust is key to understanding the growth and stabilization of cratons. The Akia Terrane, part of the North Atlantic Craton, West Greenland, is comprised of Meso-to-Neoarchaean orthogneiss, with associated supracrustal rocks. We report zircon U–Pb and Lu–Hf isotope data, and whole-rock geochemistry, from samples of gneiss and supracrustals from the northern Akia Terrane, including from the Finnefjeld Orthogneiss Complex, which has recently been interpreted as an impact structure. Isotope data record two major episodes of continental crust production at ca. 3.2 and 3.0 Ga. Minor ca. 2.7 and 2.5 Ga magmatic events have more evolved ΔHf, interpreted as reworking of existing crust perhaps linked to terrane assembly. Felsic rocks from the Finnefjeld Orthogneiss Complex were derived from the same source at the same time as the surrounding tonalites, but from shallower melting, requiring any bolide-driven melting event to have occurred almost simultaneously alongside the production of the surrounding crust. A simpler alternative has the Finnefjeld Complex and surrounding tonalite representing the coeval genesis of evolved crust over a substantial lithospheric depth. Hafnium isotope data from the two major Mesoarchaean crust-forming episodes record a contribution from older mafic Eoarchaean crust. Invoking the involvement of an Eoarchaean root in the growth of younger Mesoarchaean crust puts important constraints on geodynamic models of the formation of the discrete terranes that ultimately assembled to form Earth’s cratons.Publisher PDFPeer reviewe

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers

    Get PDF
    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were obtained. As results of work, an effectiveness of functionalization was 2.94 % w/w for OLC-DOX and 2.98 % w/w for UDD-DOX. Also, there was demonstrated that UDD-DOX and OLC-DOX constructs had dose-dependent cytotoxic effect on tumor cells in the presence of trypsin. The survival of adenocarcinoma cells reduced from 52 to 28 % in case of incubation with the UDD-DOX in concentrations from 8.4–2.5 to 670–20 Όg/ml and from 72 to 30 % after incubation with OLC-DOX. Simultaneously, antibodies to epidermal growth factor maintained 75 % of the functional activity and specificity after matrix-assisted pulsed laser evaporation deposition. Thus, the conclusion has been made about the prospects of selected new methods and approaches for creating an antitumor agent with capabilities targeted delivery of drugs

    The age, origin and emplacement of the Tsiknias Ophiolite, Tinos, Greece

    Get PDF
    The Tsiknias Ophiolite, exposed at the highest structural levels of Tinos, Greece, represents a thrust sheet of Tethyan oceanic crust and upper mantle emplaced onto the Attic‐Cycladic Massif. We present new field observations and a new geological map of Tinos, integrated with petrology, THERMOCALC phase diagram modelling, U–Pb geochronology and whole rock geochemistry, resulting in a tectono‐thermal model that describes the formation and emplacement of the Tsiknias Ophiolite and newly identified underlying metamorphic sole. The ophiolite comprises a succession of partially dismembered and structurally repeated ultramafic and gabbroic rocks that represent the Moho Transition Zone. A plagiogranite dated by U‐Pb zircon at 161.9 ± 2.8 Ma, reveals that the Tsiknias Ophiolite formed in a supra‐subduction zone setting, comparable to the “East‐Vardar Ophiolites”, and was intruded by gabbros at 144.4 ± 5.6 Ma. Strongly sheared metamorphic sole rocks show a condensed and inverted metamorphic gradient, from partially anatectic amphibolites at P–T conditions of ca. 8.5 kbar 850‐600 °C, down‐structural section to greenschist‐facies oceanic metasediments over ~250 m. Leucosomes generated by partial melting of the uppermost sole amphibolite, yielded a U–Pb zircon protolith age of ca. 190 Ma and a high‐grade metamorphic‐anatectic age of 74.0 ± 3.5 Ma associated with ophiolite emplacement. The Tsiknias Ophiolite was therefore obducted ~90 Myrs after it formed during initiation of a NE‐dipping intra‐oceanic subduction zone to the northeast of the Cyclades that coincides with Africa's plate motion changing from transcurrent to convergent. Continued subduction resulted in high‐pressure metamorphism of the Cycladic continental margin ~25 Myrs later

    Permian high-temperature metamorphism in the Western Alps (NW Italy)

    Get PDF
    During the late Palaeozoic, lithospheric thinning in part of the Alpine realm caused high-temperature low-to-medium pressure metamorphism and partial melting in the lower crust. Permian metamorphism and magmatism has extensively been recorded and dated in the Central, Eastern, and Southern Alps. However, Permian metamorphic ages in the Western Alps so far are constrained by very few and sparsely distributed data. The present study fills this gap. We present U/Pb ages of metamorphic zircon from several Adria-derived continental units now situated in the Western Alps, defining a range between 286 and 266 Ma. Trace element thermometry yields temperatures of 580-890°C from Ti-in-zircon and 630-850°C from Zr-in-rutile for Permian metamorphic rims. These temperature estimates, together with preserved mineral assemblages (garnet-prismatic sillimanite-biotite-plagioclase-quartz-K-feldspar-rutile), define pervasive upper-amphibolite to granulite facies conditions for Permian metamorphism. U/Pb ages from this study are similar to Permian ages reported for the Ivrea Zone in the Southern Alps and Austroalpine units in the Central and Eastern Alps. Regional comparison across the former Adriatic and European margin reveals a complex pattern of ages reported from late Palaeozoic magmatic and metamorphic rocks (and relics thereof): two late Variscan age groups (~330 and ~300 Ma) are followed seamlessly by a broad range of Permian ages (300-250 Ma). The former are associated with late-orogenic collapse; in samples from this study these are weakly represented. Clearly, dominant is the Permian group, which is related to crustal thinning, hinting to a possible initiation of continental rifting along a passive margin
    • 

    corecore