58 research outputs found

    Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation.

    Get PDF
    Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence

    A Security and Authentication Layer for SCADA/DCS Applications

    No full text
    Mid 2010, a sophisticated malicious computer worm called Stuxnet targeted major ICS systems around the world causing severe damages to Siemens automation products. Stuxnet proved its ability to infect air-gapped-segregated critical computers control system. After this attack, the whole ICS industry security was thrust into spotlight. Automation suppliers have already started to re-think their business approach to cyber security. The OPC foundation have made also significant changes and improvements on its new design OPC-UA to increase security of automation applications but, what is still missing and seems to be not resolved any time soon is having security in depth for industrial automation applications. In this paper, we propose a simple but strong security control solution to be implemented as a logic level security on SCADA and DCS systems. The method presented in this work enforces message integrity to build trusts between DCS system components, but it should not be viewed as the main nor the only protection layer implemented on an industrial automation system. The proposed solution can be viewed as a low-level security procedure to avoid malicious attacks such as Stuxnet
    corecore