1,803 research outputs found
New method for critical failure prediction of complex systems
Rigorous analytical technique, called criticality determination methodology /or CD technique/ determines the probability that a given complex system will successfully achieve stated objectives. The CD technique identifies critical elements of the system by a failure mode and effects analysis
Variations in Melosira islandica valve morphology in Lake Ontario sediments related to eutrophication and silica depletion
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109796/1/lno19853020414.pd
Agonism Reloaded: Potentia, Renewal and Radical Democracy
This article focuses on the agonistic account of renewal and discusses its place within the broader horizon of radical democracy. It suggests that while the emphasis which agonistic theorists place on difference and popular struggles (particularly social movement politics) ensures some common ground with other theories of radical democracy, their account of renewal also displays some marked differences. The article explores these differences and discusses whether agonism is sufficient to address the limits of the current neoliberal order
'A habitual disposition to the good': on reason, virtue and realism
Amidst the crisis of instrumental reason, a number of contemporary political philosophers including Jürgen Habermas have sought to rescue the project of a reasonable humanism from the twin threats of religious fundamentalism and secular naturalism. In his recent work, Habermas defends a post-metaphysical politics that aims to protect rationality against encroachment while also accommodating religious faith within the public sphere. This paper contends that Habermas’ post-metaphysical project fails to provide a robust alternative either to the double challenge of secular naturalism and religious fundamentalism or to the ruthless instrumentalism that underpins capitalism. By contrast with Habermas and also with the ‘new realism’ of contemporary political philosophers such as Raymond Geuss or Bernard Williams, realism in the tradition of Plato and Aristotle can defend reason against instrumental rationality and blind belief by integrating it with habit, feeling and even faith. Such metaphysical–political realism can help develop a politics of virtue that goes beyond communitarian thinking by emphasising plural modes of association (not merely ‘community’), substantive ties of sympathy and the importance of pursuing goodness and mutual flourishing
Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart.
In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation drives part of the excessive superoxide production implicated in the pathogenesis of heart failure. Pacing-induced heart failure was performed in eight chronically instrumented dogs. Seven normal dogs served as control. End-stage failure occurred after 28 +/- 1 days of pacing, when left ventricular end-diastolic pressure reached 25 mm Hg. In left ventricular tissue homogenates, spontaneous superoxide generation measured by lucigenin (5 microM) chemiluminescence was markedly increased in heart failure (1338 +/- 419 vs. 419 +/- 102 AU/mg protein, P < 0.05), as were NADPH levels (15.4 +/- 1.5 vs. 7.5 +/- 1.5 micromol/gww, P < 0.05). Superoxide production was further stimulated by the addition of NADPH. The NADPH oxidase inhibitor gp91(ds-tat) (50 microM) and the NO synthase inhibitor L-NAME (1 mM) both significantly lowered superoxide generation in failing heart homogenates by 80% and 76%, respectively. G6PD was upregulated and its activity higher in heart failure compared to control (0.61 +/- 0.10 vs. 0.24 +/- 0.03 nmol/min/mg protein, P < 0.05), while superoxide production decreased to normal levels in the presence of the G6PD inhibitor 6-aminonicotinamide. We conclude that the activation of myocardial G6PD is a novel mechanism that enhances NADPH availability and fuels superoxide-generating enzymes in heart failure
Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri
We present a genome-scale metabolic model for the archaeal methanogen Methanosarcina barkeri. We characterize the metabolic network and compare it to reconstructions from the prokaryotic, eukaryotic and archaeal domains. Using the model in conjunction with constraint-based methods, we simulate the metabolic fluxes and resulting phenotypes induced by different environmental and genetic conditions. This represents the first large-scale simulation of either a methanogen or an archaeal species. Model predictions are validated by comparison to experimental growth measurements and phenotypes of M. barkeri on different substrates. The predicted growth phenotypes for wild type and mutants of the methanogenic pathway have a high level of agreement with experimental findings. We further examine the efficiency of the energy-conserving reactions in the methanogenic pathway, specifically the Ech hydrogenase reaction, and determine a stoichiometry for the nitrogenase reaction. This work demonstrates that a reconstructed metabolic network can serve as an analysis platform to predict cellular phenotypes, characterize methanogenic growth, improve the genome annotation and further uncover the metabolic characteristics of methanogenesis
Evaluating Active U: an Internet-mediated physical activity program.
Background:
Engaging in regular physical activity can be challenging, particularly during the winter months. To promote physical activity at the University of Michigan during the winter months, an eight-week Internet-mediated program (Active U) was developed providing participants with an online physical activity log, goal setting, motivational emails, and optional team participation and competition.
Methods:
This study is a program evaluation of Active U. Approximately 47,000 faculty, staff, and graduate students were invited to participate in the online Active U intervention in the winter of 2007. Participants were assigned a physical activity goal and were asked to record each physical activity episode into the activity log for eight weeks. Statistics for program reach, effectiveness, adoption, and implementation were calculated using the Re-Aim framework. Multilevel regression analyses were used to assess the decline in rates of data entry and goal attainment during the program, to assess the likelihood of joining a team by demographic characteristics, to test the association between various predictors and the number of weeks an individual met his or her goal, and to analyze server load.
Results:
Overall, 7,483 individuals registered with the Active U website (≈16% of eligible), and 79% participated in the program by logging valid data at least once. Staff members, older participants, and those with a BMI < 25 were more likely to meet their weekly physical activity goals, and average rate of meeting goals was higher among participants who joined a competitive team compared to those who participated individually (IRR = 1.28, P < .001).
Conclusion:
Internet-mediated physical activity interventions that focus on physical activity logging and goal setting while incorporating team competition may help a significant percentage of the target population maintain their physical activity during the winter months
First Observation of the Rare Decay Mode K-long -> e+ e-
In an experiment designed to search for and study very rare two-body decay
modes of the K-long, we have observed four examples of the decay K-long -> e+
e-, where the expected background is 0.17+-0.10 events. This observation
translates into a branching fraction of 8.7^{+5.7}_{-4.1} X 10^{-12},
consistent with recent theoretical predictions. This result represents by far
the smallest branching fraction yet measured in particle physics.Comment: 9 pages, 3 figure
- …