123 research outputs found

    Using fNIRS to Measure Emotional Processing Following Mindful Meditation

    Get PDF
    Mindful meditation, an exercise which encourages its practitioners to be present in the moment and to be aware of their current emotions, thoughts, and sensations, has been shown to affect the processing of emotional information (Sobolewski et al., 2011) and to increase empathy (Tan, Lo, & Macrae, 2014). The prefrontal cortex has been implicated in these processes (Seitz, Nickel, & Azari, 2006). We sought to investigate the neural mechanisms which underlie how mindful meditation affects emotional processing and to determine whether any changes in brain activity could be linked to changes in empathy. Participants in our experimental group practiced mindful meditation for ten minutes. Those in the control groups either listened to an unexciting newscast or sat quietly for ten minutes. Next, participants in all conditions viewed a series of emotionally valenced images from the International Affective Picture System (IAPS) (Lang, Bradley, & Cuthbert, 2008). As they viewed the images, activity in the prefrontal cortex was monitored with functional near-infrared spectroscopy (fNIRS). Following the presentation of the IAPS images, participants completed questionnaires and inventories that measured empathy, previous experience with meditation, and personality traits. As well as differences in empathy between participants who meditated and participants who did not, we expect to discover any variations in patterns of prefrontal cortical activity during the viewing of positive, negative, and neutral imagery. We hope that our results will elucidate how mindful meditation affects emotional processing and the development of empathy, and to determine whether certain personality traits, social conservatism, or lack of sleep may predict neural and behavioral responses to mindful meditation. Lang, P.J., Bradley, M.M., & Cuthbert, B.N. (2008). International affective picture System (IAPS): Affective ratings of pictures and instruction manual. Technical Report A-8. University of Florida, Gainesville, FL. Seitz, R.J., Nickel, J., & Azari, N.P. (2006). Functional modularity of the medial prefrontal cortex: Involvement in human empathy. Neuropsychology, 20(6), 743-751. Sobolewski, A., Holt, E., Kublik, E., & Wróbel, A. (2011). Impact of meditation on emotional processing—A visual ERP study. Neuroscience Research, 71(1), 44–48. doi: 10.1016/j.neures.2011.06.002 Tan, L.B.G., Lo, B.C.Y., & Macrae, C.N. (2014). Brief Mindfulness Meditation Improves Mental State Attribution and Empathizing. PLoS ONE, 9(10). doi: 10.1371/journal.pone.011051

    Mapping Materials and Molecules

    Get PDF
    The visualization of data is indispensable in scientific research, from the early stages when human insight forms to the final step of communicating results. In computational physics, chemistry and materials science, it can be as simple as making a scatter plot or as straightforward as looking through the snapshots of atomic positions manually. However, as a result of the “big data” revolution, these conventional approaches are often inadequate. The widespread adoption of high-throughput computation for materials discovery and the associated community-wide repositories have given rise to data sets that contain an enormous number of compounds and atomic configurations. A typical data set contains thousands to millions of atomic structures, along with a diverse range of properties such as formation energies, band gaps, or bioactivities. It would thus be desirable to have a data-driven and automated framework for visualizing and analyzing such structural data sets. The key idea is to construct a low-dimensional representation of the data, which facilitates navigation, reveals underlying patterns, and helps to identify data points with unusual attributes. Such data-intensive maps, often employing machine learning methods, are appearing more and more frequently in the literature. However, to the wider community, it is not always transparent how these maps are made and how they should be interpreted. Furthermore, while these maps undoubtedly serve a decorative purpose in academic publications, it is not always apparent what extra information can be garnered from reading or making them. This Account attempts to answer such questions. We start with a concise summary of the theory of representing chemical environments, followed by the introduction of a simple yet practical conceptual approach for generating structure maps in a generic and automated manner. Such analysis and mapping is made nearly effortless by employing the newly developed software tool ASAP. To showcase the applicability to a wide variety of systems in chemistry and materials science, we provide several illustrative examples, including crystalline and amorphous materials, interfaces, and organic molecules. In these examples, the maps not only help to sift through large data sets but also reveal hidden patterns that could be easily missed using conventional analyses. The explosion in the amount of computed information in chemistry and materials science has made visualization into a science in itself. Not only have we benefited from exploiting these visualization methods in previous works, we also believe that the automated mapping of data sets will in turn stimulate further creativity and exploration, as well as ultimately feed back into future advances in the respective fields

    Mapping Materials and Molecules.

    Get PDF
    The visualization of data is indispensable in scientific research, from the early stages when human insight forms to the final step of communicating results. In computational physics, chemistry and materials science, it can be as simple as making a scatter plot or as straightforward as looking through the snapshots of atomic positions manually. However, as a result of the "big data" revolution, these conventional approaches are often inadequate. The widespread adoption of high-throughput computation for materials discovery and the associated community-wide repositories have given rise to data sets that contain an enormous number of compounds and atomic configurations. A typical data set contains thousands to millions of atomic structures, along with a diverse range of properties such as formation energies, band gaps, or bioactivities.It would thus be desirable to have a data-driven and automated framework for visualizing and analyzing such structural data sets. The key idea is to construct a low-dimensional representation of the data, which facilitates navigation, reveals underlying patterns, and helps to identify data points with unusual attributes. Such data-intensive maps, often employing machine learning methods, are appearing more and more frequently in the literature. However, to the wider community, it is not always transparent how these maps are made and how they should be interpreted. Furthermore, while these maps undoubtedly serve a decorative purpose in academic publications, it is not always apparent what extra information can be garnered from reading or making them.This Account attempts to answer such questions. We start with a concise summary of the theory of representing chemical environments, followed by the introduction of a simple yet practical conceptual approach for generating structure maps in a generic and automated manner. Such analysis and mapping is made nearly effortless by employing the newly developed software tool ASAP. To showcase the applicability to a wide variety of systems in chemistry and materials science, we provide several illustrative examples, including crystalline and amorphous materials, interfaces, and organic molecules. In these examples, the maps not only help to sift through large data sets but also reveal hidden patterns that could be easily missed using conventional analyses.The explosion in the amount of computed information in chemistry and materials science has made visualization into a science in itself. Not only have we benefited from exploiting these visualization methods in previous works, we also believe that the automated mapping of data sets will in turn stimulate further creativity and exploration, as well as ultimately feed back into future advances in the respective fields

    Making Automatic Differentiation Truly Automatic: Coupling PETSc with ADIC

    Full text link
    Despite its name, automatic differentiation (AD) is often far from an automatic process. often one must specify independent and dependent variables, indicate the derivative quantities to be computed, and perhaps even provide information about the structure of the Jacobians or Hessians being computed. However, when AD is used in conjunction with a toolkit with well-defined interfaces, many of these issues do not arise. They describe recent research into coupling the ADIC automatic differentiation tool with PETSc, a toolkit for the parallel numerical solution of PDEs. This research leverages the interfaces and objects of PETSc to make the AD process very nearly transparent

    Bag-of-Colors for Biomedical Document Image Classification

    Get PDF
    The number of biomedical publications has increased noticeably in the last 30 years. Clinicians and medical researchers regularly have unmet information needs but require more time for searching than is usually available to find publications relevant to a clinical situation. The techniques described in this article are used to classify images from the biomedical open access literature into categories, which can potentially reduce the search time. Only the visual information of the images is used to classify images based on a benchmark database of ImageCLEF 2011 created for the task of image classification and image retrieval. We evaluate particularly the importance of color in addition to the frequently used texture and grey level features. Results show that bags–of–colors in combination with the Scale Invariant Feature Transform (SIFT) provide an image representation allowing to improve the classification quality. Accuracy improved from 69.75% of the best system in ImageCLEF 2011 using visual information, only, to 72.5% of the system described in this paper. The results highlight the importance of color for the classification of biomedical images

    The ecology of human-caused mortality for a protected large carnivore

    Get PDF
    Mitigating human-caused mortality for large carnivores is a pressing global challenge for wildlife conservation. However, mortality is almost exclusively studied at local (within-population) scales creating a mismatch between our understanding of risk and the spatial extent most relevant to conservation and management of wide-ranging species. Here, we quantified mortality for 590 radio-collared mountain lions statewide across their distribution in California to identify drivers of human-caused mortality and investigate whether human-caused mortality is additive or compensatory. Human-caused mortality, primarily from conflict management and vehicles, exceeded natural mortality despite mountain lions being protected from hunting. Our data indicate that human-caused mortality is additive to natural mortality as population-level survival decreased as a function of increasing human-caused mortality and natural mortality did not decrease with increased human-caused mortality. Mortality risk increased for mountain lions closer to rural development and decreased in areas with higher proportions of citizens voting to support environmental initiatives. Thus, the presence of human infrastructure and variation in the mindset of humans sharing landscapes with mountain lions appear to be primary drivers of risk. We show that human-caused mortality can reduce population-level survival of large carnivores across large spatial scales, even when they are protected from hunting

    Evolutionary paths to macrolide resistance in a Neisseria commensal converge on ribosomal genes through short sequence duplications

    Get PDF
    Neisseria commensals are an indisputable source of resistance for their pathogenic relatives. However, the evolutionary paths commensal species take to reduced susceptibility in this genus have been relatively underexplored. Here, we leverage in vitro selection as a powerful screen to identify the genetic adaptations that produce azithromycin resistance (ďż˝ 2 ÎĽg/mL) in the Neisseria commensal, N. elongata. Across multiple lineages (n = 7/16), we find mutations that reduce susceptibility to azithromycin converge on the locus encoding the 50S ribosomal L34 protein (rpmH) and the intergenic region proximal to the 30S ribosomal S3 protein (rpsC) through short tandem duplication events. Interestingly, one of the laboratory evolved mutations in rpmH is identical (7LKRTYQ12), and two nearly identical, to those recently reported to contribute to high-level azithromycin resistance in N. gonorrhoeae. Transformations into the ancestral N. elongata lineage confirmed the causality of both rpmH and rpsC mutations. Though most lineages inheriting duplications suffered in vitro fitness costs, one variant showed no growth defect, suggesting the possibility that it may be sustained in natural populations. Ultimately, studies like this will be critical for predicting commensal alleles that could rapidly disseminate into pathogen populations via allelic exchange across recombinogenic microbial genera
    • …
    corecore