12,058 research outputs found

    A nonlinear drift which leads to κ\kappa-generalized distributions

    Full text link
    We consider a system described by a Fokker-Planck equation with a new type of momentum-dependent drift coefficient which asymptotically decreases as −1/p-1/p for a large momentum pp. It is shown that the steady-state of this system is a κ\kappa-generalized Gaussian distribution, which is a non-Gaussian distribution with a power-law tail.Comment: Submitted to EPJB. 8 pages, 2 figures, dedicated to the proceedings of APFA

    Dynamical Susceptibility in KH2PO4-type Crystals above and below Tc

    Full text link
    The time dependent cluster approximation called the path probability method (PPM) is applied to a pseudo-spin Ising Hamiltonian of the Slater-Takagi model for KH2PO4-type hydrogen-bonded ferroelectrics in order to calculate the homogeneous dynamical susceptibility above and below the ferroelectric transition temperature. Above the transition temperature all the calculations are carried out analytically in the cactus approximation of the PPM. Below the transition temperature the dynamical susceptibility is also calculated accurately since the analytical solution of spontaneous polarization in the ferroelectric phase can be utilized. When the temperature is approached from both sides of the transition temperature, only one of relaxation times shows a critical slowing down and makes a main contribution to the dynamical susceptibility. The discrepancy from Slater model (ice-rule limit) is discussed in comparison with some experimental data.Comment: 8 pages, 10 figure

    The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments

    Full text link
    The growth processes from protoplanetary dust to planetesimals are not fully understood. Laboratory experiments and theoretical models have shown that collisions among the dust aggregates can lead to sticking, bouncing, and fragmentation. However, no systematic study on the collisional outcome of protoplanetary dust has been performed so far so that a physical model of the dust evolution in protoplanetary disks is still missing. We intend to map the parameter space for the collisional interaction of arbitrarily porous dust aggregates. This parameter space encompasses the dust-aggregate masses, their porosities and the collision velocity. With such a complete mapping of the collisional outcomes of protoplanetary dust aggregates, it will be possible to follow the collisional evolution of dust in a protoplanetary disk environment. We use literature data, perform own laboratory experiments, and apply simple physical models to get a complete picture of the collisional interaction of protoplanetary dust aggregates. In our study, we found four different types of sticking, two types of bouncing, and three types of fragmentation as possible outcomes in collisions among protoplanetary dust aggregates. We distinguish between eight combinations of porosity and mass ratio. For each of these cases, we present a complete collision model for dust-aggregate masses between 10^-12 and 10^2 g and collision velocities in the range 10^-4 to 10^4 cm/s for arbitrary porosities. This model comprises the collisional outcome, the mass(es) of the resulting aggregate(s) and their porosities. We present the first complete collision model for protoplanetary dust. This collision model can be used for the determination of the dust-growth rate in protoplanetary disks.Comment: accepted by Astronomy and Astrophysic

    Development and correlation: Viking Orbiter analytical dynamic model with modal test

    Get PDF
    The Viking Orbiter (VO) experience in the achievement of a mathematical model is described along with the following project activities: (1) the generation of the overall plan for load analysis, an analytical dynamic model, and development tests; (2) the performance of VO subsystem static and modal tests; and (3) the correlation of the VO system model analysis and test. Success is attributed to the coordination of analysis and test using substructure modal coupling techniques

    Anatomical variation of habitat related changes in scapular morphology

    Get PDF
    The mammalian forelimb is adapted to different functions including postural, locomotor, feeding, exploratory, grooming and defense. Comparative studies on morphology of the mammalian scapula have been performed in an attempt to establish the functional differences in the use of the forelimb. In this study, a total of 102 scapulae collected from 66 species of animals, representatives of all major taxa from rodents, sirenians, marsupials, pilosa, cetaceans, carnivores, ungulates, primates and apes were analyzed. Parameters measured included scapular length, width, position, thickness, area, angles and index. Structures included supraspinous and infraspinous fossae, scapular spine, glenoid cavity, acromium and coracoid processes. Images were taken using computed tomographic (CT) scanning technology (CT-Aquarium, Toshiba and micro CT- LaTheta, Hotachi, Japan) and measurement values acquired and processed using Avizo computer software and CanvasTM 11 ACD systems. Statistical analysis was performed using Microsoft Excel 2013. Results obtained showed that there were similar morphological characteristics of scapula in mammals with arboreal locomotion and living in forest and mountainous areas but differed from those with leaping and terrestrial locomotion living in open habitat or savannah. The cause for the statistical grouping of the animals signifies presence of the close relationship between habitat and scapular morphology and in a way that corresponds to type of locomotion and speed. The morphological characteristics of the scapula and functional interpretation of the parameters in relation to habitat of each taxon is discussed in detail. Keywords: Mammalian, Scapula, Morphology, CT analysi

    Derivation of the Quantum Probability Rule without the Frequency Operator

    Full text link
    We present an alternative frequencists' proof of the quantum probability rule which does not make use of the frequency operator, with expectation that this can circumvent the recent criticism against the previous proofs which use it. We also argue that avoiding the frequency operator is not only for technical merits for doing so but is closely related to what quantum mechanics is all about from the viewpoint of many-world interpretation.Comment: 12 page

    On Phase Transition of NH4H2PO4NH_{4}H_{2}PO_{4}-Type Crystals by Cluster Variation Method

    Full text link
    The Cluster Variation Method (CVM) is applied to the Ishibashi model for ammonium dihydrogen phosphate (NH4H2PO4\rm NH_{4}H_{2}PO_{4}) of a typical hydrogen bonded anti-ferroelectric crystal. The staggered and the uniform susceptibility without hysteresis are calculated at equilibrium. On the other hand, by making use of the natural iteration method (NIM) for the CVM, hysteresis phenomena of uniform susceptibility versus temperature observed in experiments is well explained on the basis of local minimum in Landau type variational free energy. The polarization PP curves against the uniform field is also calculated.Comment: 14 pages, 10 figure
    • …
    corecore