13,133 research outputs found
Tracer Applications of Noble Gas Radionuclides in the Geosciences
The noble gas radionuclides, including 81Kr (half-life = 229,000 yr), 85Kr
(11 yr), and 39Ar (269 yr), possess nearly ideal chemical and physical
properties for studies of earth and environmental processes. Recent advances in
Atom Trap Trace Analysis (ATTA), a laser-based atom counting method, have
enabled routine measurements of the radiokrypton isotopes, as well as the
demonstration of the ability to measure 39Ar in environmental samples. Here we
provide an overview of the ATTA technique, and a survey of recent progress made
in several laboratories worldwide. We review the application of noble gas
radionuclides in the geosciences and discuss how ATTA can help advance these
fields, specifically determination of groundwater residence times using 81Kr,
85Kr, and 39Ar; dating old glacial ice using 81Kr; and an 39Ar survey of the
main water masses of the oceans, to study circulation pathways and estimate
mean residence times. Other scientific questions involving deeper circulation
of fluids in the Earth's crust and mantle also are within the scope of future
applications. We conclude that the geoscience community would greatly benefit
from an ATTA facility dedicated to this field, with instrumentation for routine
measurements, as well as for research on further development of ATTA methods
Ac transport studies in polymers by a resistor network and transfer matrix approaches: application to polyaniline
A statistical model of resistor network is proposed to describe a polymer
structure and to simulate the real and imaginary components of its ac
resistivity. It takes into account the polydispersiveness of the material as
well as intrachain and interchain charge transport processes. By the
application of a transfer matrix technique, it reproduces ac resistivity
measurements carried out with polyaniline films in different doping degrees and
at different temperatures. Our results indicate that interchain processes
govern the resistivity behavior in the low frequency region while, for higher
frequencies, intrachain mechanisms are dominant.Comment: LaTeX file, 15 pages, 5 ps figures, to appear in Phys. Rev.
One-to-one full scale simulations of laser wakefield acceleration using QuickPIC
We use the quasi-static particle-in-cell code QuickPIC to perform full-scale,
one-to-one LWFA numerical experiments, with parameters that closely follow
current experimental conditions. The propagation of state-of-the-art laser
pulses in both preformed and uniform plasma channels is examined. We show that
the presence of the channel is important whenever the laser self-modulations do
not dominate the propagation. We examine the acceleration of an externally
injected electron beam in the wake generated by 10 J laser pulses, showing that
by using ten-centimeter-scale plasma channels it is possible to accelerate
electrons to more than 4 GeV. A comparison between QuickPIC and 2D OSIRIS is
provided. Good qualitative agreement between the two codes is found, but the 2D
full PIC simulations fail to predict the correct laser and wakefield
amplitudes.Comment: 5 pages, 5 figures, accepted for publication IEEE TPS, Special Issue
- Laser & Plasma Accelerators - 8/200
On the Existence of Undistorted Progressive Waves (UPWs) of Arbitrary Speeds in Nature
We present the theory, the experimental evidence, and fundamental physical
consequences concerning the existence of families of undistorted progressive
waves (UPWs) of arbitrary speeds , which are solutions of the
homogeneous wave equation, Maxwell equations, and Dirac and Weyl equations.Comment: 77 pages, Latex article, with figures. Includes corrections to the
published versio
Structure and Vibrations of the Vicinal Copper (211) Surface
We report a first principles theoretical study of the surface relaxation and
lattice dynamics of the Cu(211) surface using the plane wave pseudopotential
method. We find large atomic relaxations for the first several atomic layers
near the step edges on this surface, and a substantial step-induced
renormalization of the surface harmonic force constants. We use the results to
study the harmonic fluctuations around the equilibrium structure and find three
new step-derived features in the zone center vibrational spectrum. Comparison
of these results with previous theoretical work and weith experimental studies
using inelastic He scattering are reported.Comment: 6 Pages RevTex, 7 Figures in Postscrip
Polaron Variational Methods In The Particle Representation Of Field Theory : I. General Formalism
We apply nonperturbative variational techniques to a relativistic scalar
field theory in which heavy bosons (``nucleons'') interact with light scalar
mesons via a Yukawa coupling. Integrating out the meson field and neglecting
the nucleon vacuum polarization one obtains an effective action in terms of the
heavy particle coordinates which is nonlocal in the proper time. As in
Feynman's polaron approach we approximate this action by a retarded quadratic
action whose parameters are to be determined variationally on the pole of the
two-point function. Several ans\"atze for the retardation function are studied
and for the most general case we derive a system of coupled variational
equations. An approximate analytic solution displays the instability of the
system for coupling constants beyond a critical value.Comment: 33 pages standard LaTeX, 3 uuencoded gzipped postscript figures
embedded with psfig.st
Elastic electron deuteron scattering with consistent meson exchange and relativistic contributions of leading order
The influence of relativistic contributions to elastic electron deuteron
scattering is studied systematically at low and intermediate momentum transfers
( fm). In a -expansion, all leading order
relativistic -exchange contributions consistent with the Bonn OBEPQ models
are included. In addition, static heavy meson exchange currents including boost
terms and lowest order -currents are considered. Sizeable
effects from the various relativistic two-body contributions, mainly from
-exchange, have been found in form factors, structure functions and the
tensor polarization . Furthermore, static properties, viz. magnetic
dipole and charge quadrupole moments and the mean square charge radius are
evaluated.Comment: 15 pages Latex including 5 figures, final version accepted for
publication in Phys.Rev.C Details of changes: (i) The notation of the curves
in Figs. 1 and 2 have been clarified with respect to left and right panels.
(ii) In Figs. 3 and 4 an experimental point for T_20 has been added and a
corresponding reference [48] (iii) At the end of the text we have added a
paragraph concerning the quality of the Bonn OBEPQ potential
Large enhancement of the thermopower in NaCoO at high Na doping
Research on the oxide perovskites has uncovered electronic properties that
are strikingly enhanced compared with those in conventional metals. Examples
are the high critical temperatures of the cuprate superconductors and the
colossal magnetoresistance in the manganites. The conducting layered cobaltate
displays several interesting electronic phases as is varied
including water-induced superconductivity and an insulating state that is
destroyed by field. Initial measurements showed that, in the as-grown
composition, displays moderately large thermopower and
conductivity . However, the prospects for thermoelectric cooling
applications faded when the figure of merit was found to be small at this
composition (0.60.7). Here we report that, in the poorly-explored
high-doping region 0.75, undergoes an even steeper enhancement. At the
critical doping 0.85, (at 80 K) reaches values 40 times
larger than in the as-grown crystals. We discuss prospects for low-temperature
thermoelectric applications.Comment: 6 pages, 7 figure
Models of Individual Blue Stragglers
This chapter describes the current state of models of individual blue
stragglers. Stellar collisions, binary mergers (or coalescence), and partial or
ongoing mass transfer have all been studied in some detail. The products of
stellar collisions retain memory of their parent stars and are not fully mixed.
Very high initial rotation rates must be reduced by an unknown process to allow
the stars to collapse to the main sequence. The more massive collision products
have shorter lifetimes than normal stars of the same mass, while products
between low mass stars are long-lived and look very much like normal stars of
their mass. Mass transfer can result in a merger, or can produce another binary
system with a blue straggler and the remnant of the original primary. The
products of binary mass transfer cover a larger portion of the colour-magnitude
diagram than collision products for two reasons: there are more possible
configurations which produce blue stragglers, and there are differing
contributions to the blended light of the system. The effects of rotation may
be substantial in both collision and merger products, and could result in
significant mixing unless angular momentum is lost shortly after the formation
event. Surface abundances may provide ways to distinguish between the formation
mechanisms, but care must be taking to model the various mixing mechanisms
properly before drawing strong conclusions. Avenues for future work are
outlined.Comment: Chapter 12, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G.
Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
Does accelerating universe indicates Brans-Dicke theory
The evolution of universe in Brans-Dicke (BD) theory is discussed in this
paper.
Considering a parameterized scenario for BD scalar field
which plays the role of gravitational "constant" ,
we apply the Markov Chain Monte Carlo method to investigate a global
constraints on BD theory with a self-interacting potential according to the
current observational data: Union2 dataset of type supernovae Ia (SNIa),
high-redshift Gamma-Ray Bursts (GRBs) data, observational Hubble data (OHD),
the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and
the cosmic microwave background (CMB) data. It is shown that an expanded
universe from deceleration to acceleration is given in this theory, and the
constraint results of dimensionless matter density and parameter
are, and
which is consistent with the
result of current experiment exploration, . In
addition, we use the geometrical diagnostic method, jerk parameter , to
distinguish the BD theory and cosmological constant model in Einstein's theory
of general relativity.Comment: 16 pages, 3 figure
- …