632 research outputs found

    Laser frequency combs for astronomical observations

    Full text link
    A direct measurement of the universe's expansion history could be made by observing in real time the evolution of the cosmological redshift of distant objects. However, this would require measurements of Doppler velocity drifts of about 1 centimeter per second per year, and astronomical spectrographs have not yet been calibrated to this tolerance. We demonstrate the first use of a laser frequency comb for wavelength calibration of an astronomical telescope. Even with a simple analysis, absolute calibration is achieved with an equivalent Doppler precision of approximately 9 meters per second at about 1.5 micrometers - beyond state-of-the-art accuracy. We show that tracking complex, time-varying systematic effects in the spectrograph and detector system is a particular advantage of laser frequency comb calibration. This technique promises an effective means for modeling and removal of such systematic effects to the accuracy required by future experiments to see direct evidence of the universe's putative acceleration.Comment: Science, 5th September 2008. 18 pages, 7 figures (7 JPG files), including Supporting Online Material. Version with higher resolution figures available at http://astronomy.swin.edu.au/~mmurphy/pub.htm

    A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    Full text link
    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut f\"ur Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut f\"ur Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.Comment: 9 pages, 2 figures; Solar Physics 277 (2012

    FÖRSTER TRANSFER CALCULATIONS BASED ON CRYSTAL STRUCTURE DATA FROM Agmenellum quadruplicatum C-PHYCOCYANIN

    Get PDF
    Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184, 257–277 (1985) and ibid., 188, 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the ÎČ-subunit, αÎČ-monomer, (αÎČ)3-trimer and (αÎČ)0-hexamer species with the following chromophore assignments: ÎČ155 = 's’(sensitizer), ÎČ84 =‘f (fluorescer) and α84 =‘m’(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides

    Optical Clocks in Space

    Get PDF
    The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earth's gravitational potential by relativistic geodesy, and comparisons between ground clocks.Comment: Proc. III International Conference on Particle and Fundamental Physics in Space (SpacePart06), Beijing 19 - 21 April 2006, to appear in Nucl. Phys.

    Photoionization Broadening of the 1S-2S Transition in a Beam of Atomic Hydrogen

    Get PDF
    We consider the excitation dynamics of the two-photon \sts transition in a beam of atomic hydrogen by 243 nm laser radiation. Specifically, we study the impact of ionization damping on the transition line shape, caused by the possibility of ionization of the 2S level by the same laser field. Using a Monte-Carlo simulation, we calculate the line shape of the \sts transition for the experimental geometry used in the two latest absolute frequency measurements (M. Niering {\it et al.}, PRL 84, 5496 (2000) and M. Fischer {\it et al.}, PRL 92, 230802 (2004)). The calculated line shift and line width are in excellent agreement with the experimentally observed values. From this comparison we can verify the values of the dynamic Stark shift coefficient for the \sts transition for the first time on a level of 15%. We show that the ionization modifies the velocity distribution of the metastable atoms, the line shape of the \sts transition, and has an influence on the derivation of its absolute frequency.Comment: 10 pages, 5 figure

    Absolute Frequency Measurements of the Hg^+ and Ca Optical Clock Transitions with a Femtosecond Laser

    Get PDF
    The frequency comb created by a femtosecond mode-locked laser and a microstructured fiber is used to phase coherently measure the frequencies of both the Hg^+ and Ca optical standards with respect to the SI second as realized at NIST. We find the transition frequencies to be f_Hg=1 064 721 609 899 143(10) Hz and f_Ca=455 986 240 494 158(26) Hz, respectively. In addition to the unprecedented precision demonstrated here, this work is the precursor to all-optical atomic clocks based on the Hg^+ and Ca standards. Furthermore, when combined with previous measurements, we find no time variations of these atomic frequencies within the uncertainties of |(df_Ca/dt)/f_Ca| < 8 x 10^{-14} yr^{-1}, and |(df_Hg/dt)/f_Hg|< 30 x 10^{-14} yr^{-1}.Comment: 6 pages, including 4 figures. RevTex 4. Submitted to Phys. Rev. Let

    New Limits to the Drift of Fundamental Constants from Laboratory Measurements

    Get PDF
    We have remeasured the absolute 1S1S-2S2S transition frequency ÎœH\nu_{\rm {H}} in atomic hydrogen. A comparison with the result of the previous measurement performed in 1999 sets a limit of (−29±57)(-29\pm 57) Hz for the drift of ÎœH\nu_{\rm {H}} with respect to the ground state hyperfine splitting ÎœCs\nu_{{\rm {Cs}}} in 133^{133}Cs. Combining this result with the recently published optical transition frequency in 199^{199}Hg+^+ against ÎœCs\nu_{\rm {Cs}} and a microwave 87^{87}Rb and 133^{133}Cs clock comparison, we deduce separate limits on α˙/α=(−0.9±2.9)×10−15\dot{\alpha}/\alpha = (-0.9\pm 2.9)\times 10^{-15} yr−1^{-1} and the fractional time variation of the ratio of Rb and Cs nuclear magnetic moments ÎŒRb/ÎŒCs\mu_{\rm {Rb}}/\mu_{\rm {Cs}} equal to (−0.5±1.7)×10−15(-0.5 \pm 1.7)\times 10^{-15} yr−1^{-1}. The latter provides information on the temporal behavior of the constant of strong interaction.Comment: 4 pages, 3 figures, LaTe

    High-precision wavelength calibration of astronomical spectrographs with laser frequency combs

    Full text link
    We describe a possible new technique for precise wavelength calibration of high-resolution astronomical spectrographs using femtosecond-pulsed mode-locked lasers controlled by stable oscillators such as atomic clocks. Such `frequency combs' provide a series of narrow modes which are uniformly spaced according to the laser's pulse repetition rate and whose absolute frequencies are known a priori with relative precision better than 10^{-12}. Simulations of frequency comb spectra show that the photon-limited wavelength calibration precision achievable with existing echelle spectrographs should be ~1 cm/s when integrated over a 4000A range. Moreover, comb spectra may be used to accurately characterise distortions of the wavelength scale introduced by the spectrograph and detector system. The simulations show that frequency combs with pulse repetition rates of 5-30GHz are required, given the typical resolving power of existing and possible future echelle spectrographs. Achieving such high repetition rates, together with the desire to produce all comb modes with uniform intensity over the entire optical range, represent the only significant challenges in the design of a practical system. Frequency comb systems may remove wavelength calibration uncertainties from all practical spectroscopic experiments, even those combining data from different telescopes over many decades.Comment: 10 pages, 6 figures, 1 table. Accepted by MNRAS. v2: Fig. 3 augmented and minor changes to text (including extended title
    • 

    corecore