111 research outputs found

    Substrate influence on the properties of doped thin silicon layers grown by Cat-CVD

    Get PDF
    We present structural and electrical properties for p- and n-type layers grown close to the transition between a-Si:H and nc-Si:H onto different substrates: Corning 1737 glass, ZnO:Al-coated glass and stainless steel. Structural properties were observed to depend on the substrate properties for samples grown under the same deposition conditions. Different behaviour was observed for n- and p-type material. Stainless steel seemed to enhance crystallinity when dealing with n-type layers, whereas an increased crystalline fraction was obtained on glass for p-type samples. Electrical conduction in the direction perpendicular to the substrate seemed to be mainly determined by the interfaces or by the existence of an amorphous incubation layer that might determine the electrical behaviour. In the direction perpendicular to the substrate, n-type layers exhibited a lower resistance value than p-type ones, showing better contact properties between the layer and the substrate

    The tumorigenic diversity of the three PLAG family members is associated with different DNA binding capacities.

    Full text link
    Pleomorphic adenoma gene (PLAG) 1, the main translocation target in pleomorphic adenomas of the salivary glands, is a member of a new subfamily of zinc finger proteins comprising the tumor suppressor candidate PLAG-like1 (also called ZAC1 or lost on transformation 1) and PLAGL2. In this report, we show that NIH3T3 cells overexpressing PLAG1 or PLAGL2 display the typical markers of neoplastic transformation: (a) the cells lose cell-cell contact inhibition; (b) show anchorage-independent growth; and (c) are able to induce tumors in nude mice. In contrast, PLAGL1 has been shown to prevent the proliferation of tumor cells by inducing cell cycle arrest and apoptosis. This difference in function is also reflected in their DNA binding, as we show here that the three PLAG proteins, although highly homologous in their DNA-binding domain, bind different DNA sequences in a distinct fashion. Interestingly, the PLAG1- and PLAGL2-induced transformation is accompanied by a drastic up-regulation of insulin-like growth factor-II, which we prove is a target of PLAG1 and PLAGL2. This strongly suggests that the oncogenic capacity of PLAG1 and PLAGL2 is mediated at least partly by activating the insulin-like growth factor-II mitogenic pathway.Peer reviewe

    Surface passivation of crystalline silicon by Cat-CVD amorphous and nanocrystalline thin silicon films

    Get PDF
    In this work, we study the electronic surface passivation of crystalline silicon with intrinsic thin silicon films deposited by Catalytic CVD. The contactless method used to determine the effective surface recombination velocity was the quasi-steady-state photoconductance technique. Hydrogenated amorphous and nanocrystalline silicon films were evaluated as passivating layers on n- and p-type float zone silicon wafers. The best results were obtained with amorphous silicon films, which allowed effective surface recombination velocities as low as 60 and 130 cms -1 on p- and n-type silicon, respectively. To our knowledge, these are the best results ever reported with intrinsic amorphous silicon films deposited by Catalytic CVD. The passivating properties of nanocrystalline silicon films strongly depended on the deposition conditions, especially on the filament temperature. Samples grown at lower filament temperatures (1600 °C) allowed effective surface recombination velocities of 450 and 600 cms -1 on n- and p-type silicon

    Increased conductivity of a hole transport layer due to oxidation by a molecular nanomagnet

    Get PDF
    Thin film transistors based on polyarylamine poly(N,N′-diphenyl-N,N′bis(4-hexylphenyl)-[1,1′biphenyl]-4,4′-diamine (pTPD) were fabricated using spin coating in order to measure the mobility of pTPD upon oxidation. Partially oxidized pTPD with a molecular magnetic cluster showed an increase in mobility of over two orders of magnitude. A transition in the mobility of pTPD upon doping could also be observed by the presence of a maximum obtained for a given oxidant ratio and subsequent decrease for a higher ratio. Such result agrees well with a previously reported model based on the combined effect of dipolar broadening of the density of states and transport manifold [email protected] [email protected]

    Optimisation of doped microcrystalline silicon films deposited at very low temperatures by Hot-Wire CVD

    Get PDF
    In this paper we present new results on doped μc-Si:H thin films deposited by hot-wire chemical vapour deposition (HWCVD) in the very low temperature range (125-275°C). The doped layers were obtained by the addition of diborane or phosphine in the gas phase during deposition. The incorporation of boron and phosphorus in the films and their influence on the crystalline fraction are studied by secondary ion mass spectrometry and Raman spectroscopy, respectively. Good electrical transport properties were obtained in this deposition regime, with best dark conductivities of 2.6 and 9.8 S cm -1 for the p- and n-doped films, respectively. The effect of the hydrogen dilution and the layer thickness on the electrical properties are also studied. Some technological conclusions referred to cross contamination could be deduced from the nominally undoped samples obtained in the same chamber after p- and n-type heavily doped layers

    Optimization of laser processes in n+Emitter formation for c-Si solar cells

    Get PDF
    Punctual phosphorus diffused emitters were achieved by laser patterning phosphorus doped a-SiCx:H films deposited by PECVD as a doping source. Two different lasers at wavelengths of 1064 nm and 532 nm were used. Phosphorus diffusion was confirmed by Secondary Ion Mass Spectroscopy. We explored the effect of pulse energy and number of pulses per diffused point. The results show that a fine tune of the energy pulse is critical while the number of pulses has minor effects. Scanning Electron Microscopy (SEM) pictures and optical profilometry showed a laser affected area where the c-Si is melted, ejected and solidified quickly again. Typically, the diameter of the affected area for 1064 nm laser is between two and four times greater than for 532 nm laser. Optimum parameters for both lasers were determined to obtain best J-V curves nearly to ideal diode behavior. Comparing best J-V results, lower emitter saturation current density (Jo) and contact resistance are obtained with 532 nm laser. The improvement in Jo can be related mainly to the smaller affected areas observed by SEM while lower contact resistance can be attributed to that 532 nm laser has a more superficial action resulting in higher phosphorus concentration at the surface. The expected open voltage circuit for finished solar cells using these emitters is in the range of 640 mV for 532 nm laser and 620 mV for 1064 nm one.Postprint (published version

    Microdoping compensation of microcrystalline silicon obtained by Hot-Wire Chemical Vapour Deposition

    Get PDF
    Undoped hydrogenated microcrystalline silicon was obtained by hot-wire chemical vapour deposition at different silane-to-hydrogen ratios and low temperature (<300 °C). As well as technological aspects of the deposition process, we report structural, optical and electrical characterizations of the samples that were used as the active layer for preliminary p-i-n solar cells. Raman spectroscopy indicates that changing the hydrogen dilution can vary the crystalline fraction. From electrical measurements an unwanted n-type character is deduced for this undoped material. This effect could be due to a contaminant, probably oxygen, which is also observed in capacitance-voltage measurements on Schottky structures. The negative effect of contaminants on the device was dramatic and a compensated p-i-n structure was also deposited to enhance the cell performance

    Microcrystalline silicon thin film transistors obtained by Hot-Wire CVD

    Get PDF
    Polysilicon thin film transistors (TFT) are of great interest in the field of large area microelectronics, especially because of their application as active elements in flat panel displays. Different deposition techniques are in tough competition with the objective to obtain device-quality polysilicon thin films at low temperature. In this paper we present the preliminary results obtained with the fabrication of TFT deposited by hot-wire chemical vapor deposition (HWCVD). Some results concerned with the structural characterization of the material and electrical performance of the device are presented

    Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by Hot-Wire CVD

    Get PDF
    Hydrogenated nanocrystalline silicon (nc-Si:H) obtained by hot-wire chemical vapour deposition (HWCVD) at low substrate temperature (150 °C) has been incorporated as the active layer in bottom-gate thin-film transistors (TFTs). These devices were electrically characterised by measuring in vacuum the output and transfer characteristics for different temperatures. The field-effect mobility showed a thermally activated behaviour which could be attributed to carrier trapping at the band tails, as in hydrogenated amorphous silicon (a-Si:H), and potential barriers for the electronic transport. Trapped charge at the interfaces of the columns, which are typical in nc-Si:H, would account for these barriers. By using the Levinson technique, the quality of the material at the column boundaries could be studied. Finally, these results were interpreted according to the particular microstructure of nc-Si:H

    Thin Film Transistors obtained by Hot-Wire CVD

    Get PDF
    Hydrogenated microcrystalline silicon films obtained at low temperature (150-280°C) by hot wire chemical vapour deposition at two different process pressures were measured by Raman spectroscopy, X-ray diffraction (XRD) spectroscopy and photothermal deflection spectroscopy (PDS). A crystalline fraction >90% with a subgap optical absortion 10 cm -1 at 0.8 eV were obtained in films deposited at growth rates >0.8 nm/s. These films were incorporated in n-channel thin film transistors and their electrical properties were measured. The saturation mobility was 0.72 ± 0.05 cm 2/ V s and the threshold voltage around 0.2 eV. The dependence of their conductance activation energies on gate voltages were related to the properties of the material
    corecore