2,209 research outputs found

    Unified description of bulk and interface-enhanced spin pumping

    Get PDF
    The dynamics of non-equilibrium spin accumulation generated in metals or semiconductors by rf magnetic field pumping is treated within a diffusive picture. The dc spin accumulation produced in a uniform system by a rotating applied magnetic field or by a precessing magnetization of a weak ferromagnet is in general given by a (small) fraction of hbar omega, where omega is the rotation or precession frequency. With the addition of a neighboring, field-free region and allowing for the diffusion of spins, the spin accumulation is dramatically enhanced at the interface, saturating at the universal value hbar omega in the limit of long spin relaxation time. This effect can be maximized when the system dimensions are of the order of sqrt(2pi D omega), where D is the diffusion constant. We compare our results to the interface spin pumping theory of A. Brataas et al. [Phys. Rev. B 66, 060404(R) (2002)]

    On-chip detection of ferromagnetic resonance of a single submicron permalloy strip

    Get PDF
    We measured ferromagnetic resonance of a single submicron ferromagnetic strip, embedded in an on-chip microwave transmission line device. The method used is based on detection of the oscillating magnetic flux due to the magnetization dynamics, with an inductive pick-up loop. The dependence of the resonance frequency on applied static magnetic field agrees very well with the Kittel formula, demonstrating that the uniform magnetization precession mode is being driven

    Two-laser dynamic nuclear polarization with semiconductor electrons:Feedback, suppressed fluctuations, and bistability near two-photon resonance

    Get PDF
    Feedback control is a powerful tool to stabilize systems for which precision control is difficult to impose directly, such as the environment of an open quantum system. Reduction of noise from the environment is a major challenge on the road to harnessing delicate quantum effects such as superposition and entanglement. In particular, spin states of defects and quantum dots in semiconductors display promising coherence properties for future applications, often being limited by disturbance from disordered nuclear spins in their environment. Here we show how optical coherent population trapping (CPT) of the spin of localized semiconductor electrons stabilizes the surrounding nuclear spins via feedback control. We find distinct control regimes for different signs of laser detuning and examine the transition from an unpolarized, narrowed state to a polarized state possessing a bistability. The narrowing of the state protects the electron spin against dephasing and yields self-improving CPT. Our analysis is relevant for a variety of solid-state systems where hyperfine-induced dephasing is a limitation for using electron spin coherence

    Large cone angle magnetization precession of an individual nanomagnet with dc electrical detection

    Get PDF
    We demonstrate on-chip resonant driving of large cone-angle magnetization precession of an individual nanoscale permalloy element. Strong driving is realized by locating the element in close proximity to the shorted end of a coplanar strip waveguide, which generates a microwave magnetic field. We used a microwave frequency modulation method to accurately measure resonant changes of the dc anisotropic magnetoresistance. Precession cone angles up to 909^{0} are determined with better than one degree of resolution. The resonance peak shape is well-described by the Landau-Lifshitz-Gilbert equation

    Public exhibit for demonstrating the quantum of electrical conductance

    Get PDF
    We present a new robust setup that explains and demonstrates the quantum of electrical conductance for a general audience and which is continuously available in a public space. The setup allows users to manually thin a gold wire of several atoms in diameter while monitoring its conductance in real time. During the experiment, a characteristic step-like conductance decrease due to rearrangements of atoms in the cross-section of the wire is observed. Just before the wire breaks, a contact consisting of a single atom with a characteristic conductance close to the quantum of conductance can be maintained up to several seconds. The setup is operated full-time, needs practically no maintenance and is used on different educational levels

    Microwave spectroscopy on magnetization reversal dynamics of nanomagnets with electronic detection

    Get PDF
    We demonstrate a detection method for microwave spectroscopy on magnetization reversal dynamics of nanomagnets. Measurement of the nanomagnet anisotropic magnetoresistance was used for probing how magnetization reversal is resonantly enhanced by microwave magnetic fields. We used Co strips of 2 um x 130 nm x 40 nm, and microwave fields were applied via an on-chip coplanar wave guide. The method was applied for demonstrating single domain-wall resonance, and studying the role of resonant domain-wall dynamics in magnetization reversal

    Electrical detection of spin pumping: dc voltage generated by ferromagnetic resonance at ferromagnet/nonmagnet contact

    Get PDF
    We describe electrical detection of spin pumping in metallic nanostructures. In the spin pumping effect, a precessing ferromagnet attached to a normal-metal acts as a pump of spin-polarized current, giving rise to a spin accumulation. The resulting spin accumulation induces a backflow of spin current into the ferromagnet and generates a dc voltage due to the spin dependent conductivities of the ferromagnet. The magnitude of such voltage is proportional to the spin-relaxation properties of the normal-metal. By using platinum as a contact material we observe, in agreement with theory, that the voltage is significantly reduced as compared to the case when aluminum was used. Furtheremore, the effects of rectification between the circulating rf currents and the magnetization precession of the ferromagnet are examined. Most significantly, we show that using an improved layout device geometry these effects can be minimized.Comment: 9 pages, 11 figure

    Exploring the causes of adverse events in hospitals and potential prevention strategies

    Get PDF
    Objectives To examine the causes of adverse events (AEs) and potential prevention strategies to minimise the occurrence of AEs in hospitalised patients. Methods For the 744 AEs identified in the patient record review study in 21 Dutch hospitals, trained reviewers were asked to select all causal factors that contributed to the AE. The results were analysed together with data on preventability and consequences of AEs. In addition, the reviewers selected one or more prevention strategies for each preventable AE. The recommended prevention strategies were analysed together with four general causal categories: technical, human, organisational and patient-related factors. Results Human causes were predominantly involved in the causation of AEs (in 61% of the AEs), 61% of those being preventable and 13% leading to permanent disability. In 39% of the AEs, patient-related factors were involved, in 14% organisational factors and in 4% technical factors. Organisational causes contributed relatively often to preventable AEs (93%) and AEs resulting in permanent disability (20%). Recommended strategies to prevent AEs were quality assurance/peer review, evaluation of safety behaviour, training and procedures. For the AEs with human and patient-related causes, reviewers predominantly recommended quality assurance/peer review. AEs caused by organisational factors were considered preventable by improving procedures. Discussion Healthcare interventions directed at human causes are recommended because these play a large role in AE causation. In addition, it seems worthwhile to direct interventions on organisational causes because the AEs they cause are nearly always believed to be preventable. Organisational factors are thus relatively easy to tackle. Future research designs should allow researchers to interview healthcare providers that were involved in the event, as an additional source of information on contributing factors.
    • …
    corecore