57 research outputs found

    Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review

    Get PDF
    Objective: To provide a comprehensive review on the existing research and evi-dence regarding artificial intelligence (AI) applications in the assessment and management of urinary stone disease.Methods: A comprehensive literature review was performed using PubMed, Scopus, and Google Scholar databases to identify publications about innovative concepts or supporting applica-tions of AI in the improvement of every medical procedure relating to stone disease. The terms "endourology", "artificial intelligence", "machine learning", and "urolithiasis"were used for searching eligible reports, while review articles, articles referring to automated procedures without AI application, and editorial comments were excluded from the final set of publica-tions. The search was conducted from January 2000 to September 2023 and included manu-scripts in the English language.Results: A total of 69 studies were identified. The main subjects were related to the detection of urinary stones, the prediction of the outcome of conservative or operative management, the optimization of operative procedures, and the elucidation of the relation of urinary stone chemistry with various factors.Conclusion: AI represents a useful tool that provides urologists with numerous amenities, which explains the fact that it has gained ground in the pursuit of stone disease management perfection. The effectiveness of diagnosis and therapy can be increased by using it as an alter-native or adjunct to the already existing data. However, little is known concerning the poten-tial of this vast field. Electronic patient records, containing big data, offer AI the opportunity to develop and analyze more precise and efficient diagnostic and treatment algorithms. Never-theless, the existing applications are not generalizable in real-life practice, and high-quality studies are needed to establish the integration of AI in the management of urinary stone dis-ease.CNN ; CNN

    Choline transporter gene variation is associated with attention-deficit hyperactivity disorder

    Get PDF
    The neurotransmitter acetylcholine (ACh) plays a critical role in brain circuits mediating motor control, attention, learning and memory. Cholinergic dysfunction is associated with multiple brain disorders including Alzheimer’s Disease, addiction, schizophrenia and Attention-Deficit Hyperactivity Disorder (ADHD). The presynaptic choline transporter (CHT, SLC5A7) is the major, rate-limiting determinant of ACh production in the brain and periphery and is consequently upregulated during tasks that require sustained attention. Given the contribution of central cholinergic circuits to the control of movement and attention, we hypothesized that functional CHT gene variants might impact risk for ADHD. We performed a case-control study, followed by family-based association tests on a separate cohort, of two purportedly functional CHT polymorphisms (coding variant Ile89Val (rs1013940) and a genomic SNP 3’ of the CHT gene (rs333229), affording both a replication sample and opportunities to reduce potential population stratification biases. Initial genotyping of pediatric ADHD subjects for two purportedly functional CHT alleles revealed a 2–3 fold elevation of the Val89 allele (n = 100; P = 0.02) relative to healthy controls, as well as a significant decrease of the 3’SNP minor allele in Caucasian male subjects (n = 60; P = 0.004). In family based association tests, we found significant overtransmission of the Val89 variant to children with a Combined subtype diagnosis (OR = 3.16; P = 0.01), with an increased Odds Ratio for a haplotype comprising both minor alleles. These studies show evidence of cholinergic deficits in ADHD, particularly for subjects with the Combined subtype, and, if replicated, may encourage further consideration of cholinergic agonist therapy in the disorder

    Radiations and male fertility

    Get PDF
    During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental, health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is impossible to cover all types of radiation sources and their biological effects under a single title, this review is focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count, morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased level of reactive oxygen species, which may lead to infertility. This has been concluded based on available evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality

    Seawater-dominated, tectonically controlled and volcanic related geothermal systems: the case of the geothermal area in the northwest of the island of Euboea (Evia), Greece

    No full text
    The northwest of the island of Euboea is located in a back-arc geological position, at the western extremity of the North Anatolian Fault. In that area, several hot springs occur in three locations (Ilia, Gialtra, Aedipsos; including newly found offshore-springs) with temperatures up to 84 °C, depositing ore-grade thermogenic travertine. The geothermal system is seawater-dominated and under pressure, using the local fault systems and is related to the Plio-Pleistocene Lichades volcanic centre. The whole area could be characterized as the lateral tips of a major fault segment, with the presence of complex networks of additional fault systems leading to fault intersections. That conclusion is also supported by the travitonic data. The geothermal fluids are near neutral pH, sodium-chloride and their chemistry is controlled by: (i) high seawater participation, (ii) a deep magmatic source and (iii) chemical composition of the bedrocks. Based on all the available data, including drilling and temperature logging data, the bedrock hosting the upflow circulation of the geothermal fluid is not in hydraulic connection with cold aquifers or permeable geological formations of the area. The local metamorphic rock formations are impermeable and work as a geothermal cap. Also, Aedipsos’ vast deposit of thermogenic travertine probably acts as a second geothermal cap formation. However, at the same time, it presents serious thermal anomalies, since major geothermal fluid circulation has been identified inside its fractures. According to chemical geothermometers, the temperature of the geothermal reservoir is 140–164 °C. The typical geothermal gradients in the area are from 7.8 °C/100 m to 18.7 °C/100 m. In one case, an anomalous high geothermal gradient (53.9 °C/100 m) was found, most probably due to spatial shape diversity of the geothermal reservoir, a suggestion also supported by the estimated circulation depth of the geothermal fluid, which varies from area to area (~ 300–1800 m) and the fluid residence time (by 226Ra–222Rn method), which is around 80–100 years. © 2020, Geologische Vereinigung e.V. (GV)
    corecore