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Abstract Objective: To provide a comprehensive review on the existing research and evi-
dence regarding artificial intelligence (AI) applications in the assessment and management
of urinary stone disease.
Methods: A comprehensive literature review was performed using PubMed, Scopus, and Google
Scholar databases to identify publications about innovative concepts or supporting applica-
tions of AI in the improvement of every medical procedure relating to stone disease. The terms
‘‘endourology’’, ‘‘artificial intelligence’’, ‘‘machine learning’’, and ‘‘urolithiasis’’ were used
for searching eligible reports, while review articles, articles referring to automated procedures
without AI application, and editorial comments were excluded from the final set of publica-
tions. The search was conducted from January 2000 to September 2023 and included manu-
scripts in the English language.
Results: A total of 69 studies were identified. The main subjects were related to the detection
of urinary stones, the prediction of the outcome of conservative or operative management, the
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optimization of operative procedures, and the elucidation of the relation of urinary stone
chemistry with various factors.
Conclusion: AI represents a useful tool that provides urologists with numerous amenities,
which explains the fact that it has gained ground in the pursuit of stone disease management
perfection. The effectiveness of diagnosis and therapy can be increased by using it as an alter-
native or adjunct to the already existing data. However, little is known concerning the poten-
tial of this vast field. Electronic patient records, containing big data, offer AI the opportunity
to develop and analyze more precise and efficient diagnostic and treatment algorithms. Never-
theless, the existing applications are not generalizable in real-life practice, and high-quality
studies are needed to establish the integration of AI in the management of urinary stone dis-
ease.
ª 2023 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Figure 1 Subsets of artificial intelligence with emergent role
in stone disease management.
1. Introduction

Artificial intelligence (AI) represents a scientific field where
technology simulates human intelligent behavior and way
of thinking, in order to process complex medical data and
provide useful information to the physician [1]. Back in
1950, Alan Turing questioned whether computers
could think like human beings. After the completion of the
so-called “Turing test”, Turing is considered the father of AI
[2]. Although the idea of AI was conceived in the 21st
century, it still addresses the interest of various scientific
fields, including medicine, to date.

AI represents the process of optimizing the reward func-
tion of an algorithm [3]. Similar to the chess analogy process,
where a large set of data from chess games is gathered and
analyzed, AI makes large dataset analysis feasible and
effective. Computer systems “learn” to recognize patterns
through a variety of subdomains, specifically designed to
meet the need of identifying and processing
certain patterns. These patterns are typically represented
by the so-called artificial neural networks (ANNs). A typical
ANN comprises a number of neurons (the processors), which
are connected in a logical manner. Input neurons are
engaged by environmental sensors, while additional neurons
are activated by weighted connections with previously
active neurons. This process eventually configures the
behavior of the respective ANN. The procedure of “learning”
aspires to constitute an ANN able to carry out the foreseen
behavior, such as remotely controlling a device [4].

Machine learning (ML) is a subtype of AI (Fig. 1) repre-
senting unsupervised learning based on the conclusions
drawn by the statistical analysis of large and complex neural
networks (NNs) [5]. ML opts to provide clinicians with
possible rather than “correct” answers, as it describes the
likelihood of a correlation between two or more variables.
The emergence of algorithms capable of adjusting to
advancing technologies and conditions, high-performance
computing, access to personal scientific findings through
cloud drives, as well as the utilization of open-access editing
software are the four key points that ensure the proper and
flawless operation of ML as an invaluable tool to its user [6].

Deep learning (DL), a subfield of ML, is considered a
“self-taught” concept, based on the fundamentals of algo-
rithm layering in order to build an ANN able to learn and
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decide for itself (Fig. 1) [7]. On the contrary, ML typically
requires human intervention as part of its maintenance and
proper function, whereas DL works as a human brain,
independently and without external human intervention [8].

Convolutional neural network (CNN), a more complex
type of ANN, is developed to incorporate spatial motives
and features of an image by using fully connected, convo-
lution, and pooling layers. It reduces the complexity of the
model, requires less memory and computational energy,
and provides the user with data previously inaccessible [9].
For example, image distortion in computed tomography
(CT) examinations may impede the safe evaluation of the
findings. To surpass such inconvenience, CNN focuses on
certain regions of an image, isolates them from the neigh-
boring structures, filters out undesired noise, and provides
image information previously inaccessible [10].

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Anastasiadis, A. Koudonas, G. Langas et al.
In medicine, AI is further divided into two subcategories:
virtual and physical [11]. The virtual part refers to the in-
formation and system-based learning incorporated to
facilitate the optimal treatment. Electronic health records
and treatment algorithms are created with the implication
of AI and its subtypes. The physical part represents the
technological advances, such as robotics and nanotech-
nology, developed to pursue maximum intraoperative effi-
ciency and safety [12]. The development of such distinct AI
types enables the use of a fully functioning artificial elec-
tronic brain, programmed to evaluate and analyze all tasks,
regardless of their complexity.

This integrative review aimed to provide an overview of
the contribution of AI to the diagnosis, evaluation, and
treatment of stone disease and highlight its effect on the
field of endourology. Electronic base searching (PubMed,
Google Scholar, and Scopus) with proper terms resulted to a
number of reports, which after screening from the authors
were reduced to the 69 included studies of the current
review (Fig. 2).

2. AI in the detection of stone disease

2.1. Optimization of stone disease detection by CT

During the last decades, the use of abdomen and pelvis CT
to identify and diagnose urinary tract stones has increased.
It is the most sensitive technique for the diagnosis of uro-
lithiasis; thus, it has emerged as the examination of choice.
This increasing tendency to unenhanced CT leads to the
development of computer-assisted technologies to aid
therapists in this time-consuming process (Table 1).

The AI-assisted workflow may aid in patient triage and
streamlining as the usage of imaging keeps growing. Li
et al. [13] used five state-of-art learning algorithms
(three-dimensional [3D] U-Net, Res-U-Net, SegNet,
DeepLabV3þ, and UNETR) in order to address the auto-
matic segmentation of kidneys and kidney stones in
unenhanced CT images. They trained the segmentation
networks independently (one-step direct segmentation)
and dependently (two-step coarse-to-fine segmentation).
The comparison of the above networks showed that the
Figure 2 Flowchart of the literature selection process for
articles.
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Res-U-Net network outperformed the other networks. The
two-step segmentation showed better results than the
one-step, although it has some limitations like the heavy
computing requirements and the dependence on the
precision of the first-step segmentation. Additionally, the
segmentation of larger kidney stones had better results.

Parakh et al. [14] focused on examining the diagnostic
performance of pre-trained models improved with labelled
CT images, across various scanners, for the identification of
urinary stones using a cascading CNN on non-enhanced CT
images. They developed two CNNs: CNN1 for identifying the
anatomy of the urinary tract and CNN2 for urinary stone
detection. They used the Inception-v3 CNN architecture
which was pre-trained with ImageNet. The ImageNet pre-
trained model was then fine-tuned in GrayNet, which con-
tains a human anatomy image dataset (GrayNet pre-trained
model). The CNN models for identifying the urinary tract
and detecting stones were then weight initialized using the
GrayNet pre-trained model. A high accuracy rate in
detecting stones in the urinary tract was achieved (area
under the curve [AUC] 0.954). In a study by Längkvist et al.
[15], a DL CNN was used to distinguish ureteric stones from
phleboliths based on thin slice CT images from a 465-pa-
tient database, a rather challenging task even for experi-
enced radiologists. On a test set of 88 scans, the CNN model
had a sensitivity of 100% and an average of 3.69 false pos-
itives per patient without using segmentation and
anatomical information. Adding a probability distribution
map of the stone’s placements produced an average of 2.68
false positive tests per patient and 100% sensitivity [15].
Caglayan et al. [16] examined the effectiveness of a DL
model in identifying kidney stones on unenhanced CT im-
ages in various planes based on stone size. In their retro-
spective study, 465 patients, who underwent CT scanning
for kidney stones, formed three groups depending on the
size of the kidney stones (Group 1 contained patients
with renal stone sizes of 0e1 cm; Group 2 had sizes of
1 cme2 cm; and Group 3 had sizes greater than 2 cm). The
highest accuracy rates were in the sagittal plane images of
85%, 89%, and 93% for the three groups, respectively [16].
Jendeberg et al. [17] used a 2.5-dimensional CNN of 384
pelvic calcifications, on an unseen test set. They did a
comparison between the CNN method, the assessments of
seven radiologists, and a semi-quantitative method. The
CNN performed better in comparison to the radiologists. It
achieved an accuracy of 92% while the mean radiologist
accuracy was 86%. In terms of distinguishing distal ureteric
stones from phleboliths, the sensitivity, specificity, and
AUC were 94%, 90%, and 0.95, respectively [17]. De Perrot
et al. [18] investigated the performance of a ML model
trained with radiomics, extracted from a cohort of 369
patients who underwent low-dose CT for acute flank pain.
The ML model was then used to identify and distinguish
phleboliths from ureteral stones in an independent testing
cohort of 43 patients. The ML model achieved an AUC of
0.902, an accuracy of 85.1%, and a positive predictive value
(PPV) and negative predictive value of 81.5% and 90.0%,
respectively. They mentioned that one of the advantages of
using radiomics and ML is its quantitative nature and
reproducibility. Chak et al. [19] used an ANN with support
vector machine (SVM) in order to detect kidney stones in
pre-processed CT images. They trained the ANN system



Table 1 Summary of studies regarding AI in the detection of stone disease.

Study Objective Study design AI-based outcome Comparator arm outcome

Li et al. [13] Detection of urinary stones
by CT

Cross-sectional Detection accuracy of 99.95% Other algorithms with
lower performance

Parakh et al. [14] Detection of urinary stones
by CT

Cross-sectional High accuracy in stone
detection (AUC of 0.954)

Other algorithms with
lower performance

Längkvist et al.
[15]

Detection of urinary stones
by CT

Cross-sectional Optimized accuracy with an
AUC of 0.9971

No comparator

Caglayan et al.
[16]

Detection of urinary stones
by CT

Cross-sectional Accuracy of 63%e93%,
depending on imaging plane
and stone size class

No comparator

Jendeberg et al.
[17]

Differentiation of ureteral
stones and pelvic
phleboliths by CT

Cross-sectional Accuracy of 92% Mean radiologist accuracy:
86%; majority vote
accuracy: 93%

De Perrot et al.
[18]

Differentiation of ureteral
stones and pelvic
phleboliths by CT

Cross-sectional Overall accuracy of 85.1% (AUC
of 0.902)

Other algorithms with
lower performance

Chak et al. [19] Detection of urinary stones
by CT

Cross-sectional Accuracy of 95%e99%,
depending on the number of
features used by the
algorithm

No comparator

G P et al. [20] Detection of urinary stones
by CT

Cross-sectional Accuracy of 96.82% No comparator

Elton et al. [21] Detection of urinary stones
by CT

Cross-sectional High accuracy in stone
detection (AUC of 0.95)

No comparator

Krishna et al. [22] Differentiation of renal
stones and renal cysts by
US

Cross-sectional Accuracy of 98.1% No comparator

Balamurugan and
Arumugam [23]

Differentiation of renal
stones among other
abnormalities in US

Cross-sectional Accuracy of 95.83% Other algorithms with
lower performance

Selvarani and
Rajendran [24]

Detection of renal stones by
US

Cross-sectional Accuracy of 98.8% Other algorithms with
lower performance

Viswanath et al.
[25]

Detection of renal stones by
US

Cross-sectional Accuracy of 98.9% Other algorithms with
lower performance

Akkasaligar and
Biradar [26]

Detection of renal stones by
US

Cross-sectional Accuracy of 96.8% No comparator

Verma et al. [27] Detection of renal stones by
US

Cross-sectional Accuracy of 89% Other algorithms with
lower performance

Kobayashi et al.
[28]

Detection of radio-opaque
urinary stones in KUB X-
ray images

Cross-sectional Sensitivity and PPV of 89.6%
and 56.9% for the kidney,
92.5% and 87.6% for the
proximal ureter, 59.1% and
50% for the mid-ureter, 80%
and 55.8% for the distal
ureter

No comparator

Aksakalli et al.
[29]

Detection of radio-opaque
urinary stones in KUB X-
ray images

Cross-sectional Precision of 78.4% Other algorithms with
lower performance

AI, artificial intelligence; AUC, area under the curve; CT, computed tomography; KUB, kidney-ureter-bladder; PPV, positive predictive
value; US, ultrasound.
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with gray level co-occurrence matrix (GLCM) features from
the segmented images. These CT images were before pro-
cessed and visual enhanced, while with the use of K-means
segmentation method, the region of interest was deter-
mined. They claimed accuracy of 95% in the detection of
renal stones in CT images of 25 patients. G P et al. [20] used
a CNN (particularly, the Xception model), which was
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trained on the ImageNet database. The CT dataset con-
sisted of 1453 CT kidney images, and they claimed accuracy
of 96.82% with this DL model combination. In another study
by Elton et al. [21], a DL-based system (a 13-layer CNN
classifier) achieved a sensitivity of 86% at 0.5 false positives
per scan in kidney stone identification in CT scan images.
The system classified CT images from an external validation
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set (CT scans from 6185 patients) with an AUC of 0.95, while
sensitivity and specificity were 88% and 91%, respectively.

2.2. Optimization of stone disease detection by
ultrasound (US)

In order to detect irregularity in the kidney using US images,
Krishna et al. [22] suggested a field programmable gate
array-based computer-aided detection algorithm. They first
pre-processed (denoising) the US images and manually
extracted the region of interest. From the segmented kidney
region, Haralick (GLCM) and intensity histogram features
were extracted. The algorithm was implemented in differ-
entiating normal from abnormal kidney images first with the
look-up table approach. A trained SVM with multi-layer
perception (MLP) classifier was then used to distinguish the
abnormal images of renal cysts and stones. The suggested
algorithm identified successfully the precise abnormality
shown on the renal US images with an accuracy of 98.1%,
sensitivity of 100%, and specificity of 96.8%.

Balamurugan and Arumugam [23] proposed a novel US
kidney disease prediction with the use of an ANN. They
used 750 kidney US images, 80% of which were used for the
training process and 20% for testing. The images were uti-
lized in four types, i.e., normal, cyst, stones image, and
tumor image. For implementing the proposed technique,
they have used the MATrix LABoratory platform (Math-
Works, Natick, MA, USA). They pre-processed the US im-
ages, extracted the GLCM features, selected the important
features with the use of the oppositional grasshopper
optimization algorithm. The images were then classified as
normal or abnormal with the ANN. They claimed a
maximum accuracy of 95.83% and a maximum specificity of
97.22%.

For recognizing renal stones on US images, Selvarani and
Rajendran [24] utilized the meta-heuristic SVM. They used
an adaptive mean median filter (MathWorks, Natick, MA,
USA) to eliminate speckle noises to the greatest extent
documented in the literature. Utilizing standard K-means
for segmentation, GLCM features were retrieved for clas-
sification and used by a meta-heuristic SVM classifier. The
system showed a 98.8% accuracy after being trained on 250
US pictures (150 with stones and 100 without stones).

In another study by Viswanath et al. [25], a DL reaction-
diffusion level set segmentation approach was designed to
detect kidney stones in US images. They used a plain in-
tensity filter for image processing and quality enhancement
which showed better results than other pre-processing
methods. Advanced wavelet sub-bands filters were
used for feature extracting from the processed images
based on the energy level. The proposed backpropagation,
multi-layer perceptron, and SVM ANN (MLP-back-
propagation ANN) proved to have an accuracy of 93.2%,
with an average of 7.08 s for the image segmentation.

Akkasaligar and Biradar [26] used wavelet decomposition
in 32 US images of kidneys for stone identification. The
proposed method with the use of an ANN claimed to have an
accuracy of 96.8%. In a study from Verma et al. [27] for
stone detection in kidney US images, kth nearest neighbor
(KNN) and SVM classification were used. The US images
were at first processed and improved with Gaussian filter
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and unsharp masking. The analysis of kidney stone pictures
then employed morphological procedures including erosion
and dilation, followed by entropy-based segmentation to
identify the region of interest and KNN and SVM classifica-
tion approaches. The KNN accuracy was found to be 89%
and that of SVM was 84%.

2.3. Optimization of stone disease detection
by X-ray

Kidney-ureter-bladder X-ray imaging is not the method of
choice for the detection of urolithiasis. The prerequisite of
the stone radio-opacity and the subsequent low sensitivity
represent the main disadvantages of the above modality.
Conversely, X-ray is a low-cost, low-dose with high avail-
ability examination; thus it remains a diagnostic alternative
for urinary tract stones. AI can improve the diagnostic ac-
curacy of kidney-ureter-bladder X-ray, especially for radio-
opaque stones (Table 1).

Kobayashi et al. [28] created a computer-aided detec-
tion system employing DL, to identify radio-opaque urinary
tract stones on a plain X-ray. They collected 1017 plain
X-rays of radio-opaque upper urinary tract stones, 827 of
which were used for training purposes and 190 for testing.
To account for the various picture sizes, all X-ray images
were adjusted to 1328�1328 pixels, while for contrast
improvement, histogram equalization was employed. The
CNN architecture, which was used in the study, was a
17-layer Residual Network. As a consequence of the com-
puter’s prediction, the possibility that each pixel contained
a stone was determined and shown in each input image as a
heat map, with light red denoting a high chance of stone
presence (100%) and dark green denoting zero probability
(0%). For the performance evaluation, they evaluated the
F score that demonstrates the balance of the accuracy and
is the harmonic mean of the sensitivity and PPV. The
17-layer Residual Network model provided an answer in
110 ms for each X-ray image. The highest F score was 0.752,
and the greatest sensitivity and PPV values were 87.2% and
66.2%, respectively. The sensitivity and PPV were at their
lowest at mid-ureter when the study was constrained to
proximal ureter stones, at 92.5% and 87.6%, respectively.

Aksakalli et al. [29] used different ML and DL methods to
identify kidney stones in X-ray images. They evaluated
various ML methods such as decision tree (DT), random
forest, SVM, MLP, KNN, Naive Bayes (BernoulliNB), and deep
NN (DNN) using CNN. They prepared the dataset of 221
X-ray images, 80% of which were used for training and 20%
for testing purposes. Images were first scaled to pre-
determined sizes and then transformed to the grey level
values. Then, data collection was produced by extracting
the pictures’ grey-level numerical values. There were
several oversampling and under sampling techniques that
were applied since this data set has unbalanced classes.
The methods’ performance metrics noticeably improve in
this approach. The F1 score (harmonic average of the pre-
cision and recall values) was the most essential evaluation
in their study. The DT approach seemed to outperform the
other methods, showing the highest F1 score with a success
rate of 85.3% at the synthetic minority over-sampling
technique sampling method.
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3. AI in the prediction of management
outcomes

3.1. Prediction of outcome of conservative
management
Symptomatic ureteral stones are one of the main reasons
for attending the urology department. In this context, the
clinical question of spontaneous stone passage (SSP) can be
challenging and affects the patient’s quality of life. The
possibility of SSP varies depending mostly on stone size. In
this scope, the need for faster and more accurately pre-
dicting algorithms emerges, in order to improve patient’s
quality of life with more efficient management and early
intervention when needed (Table 2).

In 2000, Cummings et al. [30], addressing the SSP clinical
question, used a commercially available ANN. They evalu-
ated the data of 180 patients, 125 of which were used for
training the NN and 55 for testing it. Feed forward-back
propagation was used for error adjustment. In feature
importance analysis, the duration of the symptoms had the
highest weight. The accuracy rates of predicting the SSP
were 100% (25/25) and 76% (42/55) for those who needed
intervention.

Dal Moro et al. [31] used a prototype logistic regression
(LR)-ANN-SVM prediction model for SSP for ureteral stones.
They claimed that the addition of SVM improved the model
performance in predicting the need for additional inter-
vention. The SVM-based model provided a sensitivity of
84.5% and a specificity of 86.9%. Additionally, in this study,
from the feature importance analysis, stone size, duration
of symptoms, and stone position outclassed the other fea-
tures in predicting SSP.

In another study, a prototype ANN was used for the SSP
estimation and to assess the efficacy of the predictive
factors [32]. A dataset of 192 patients was used and
randomly divided into three groups (training, validation,
and test). The ANN’s performance for the estimation of SSP
in the three groups was 99.2%, 85.5%, and 88.7%, respec-
tively. The predictive factors that were more significantly
correlated with the SSP were stone size, body weight, pain
score, erythrocyte sedimentation rate, and C-reactive
protein level.

Park et al. [33] used a ML and LR model for SSP esti-
mation. They retrospectively reviewed medical data from
833 patients who attended the emergency department with
unilateral ureteral stones. They evaluated the accuracy of
the standard statistical approach (LR) with the DL method
(MLP based on the Keras framework), in predicting SSP. MLP
outperformed LR in SSP for 5e10 mm stones with a speci-
ficity of 100%. For predicting SSP, for ureteral stones of
<5 mm, AUCs for MLP and LR were 0.859 and 0.847, while
for the 5 mme10 mm stones, AUCs were 0.881 and 0.817,
respectively. The highest sensitivity observed was 90.5% for
the LR model for the 5e10 mm stones. They claimed no
significantly important difference between the two models
and mentioned the need for image analysis for the
improvement of the prediction.
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3.2. Prediction of extracorporeal shockwave
lithotripsy (ESWL) outcome

ESWL has gained widespread acceptance as a practical,
non-invasive management method for urinary stones pref-
erably smaller than 2 cm. The success and stone-free rates
(SFRs) of the procedure are dependent on various factors
such as initial stone size, location, number of stones, stone
composition, and stone density. In the scope of predicting
the outcomes and reducing the procedures’ side effects,
due to this variability, many mathematical and computa-
tional methods are being studied (Table 2).

In 2003, Poulakis et al. [34] reviewed the records of 680
patients (701 renal units) who underwent primary shock
wave lithotripsy for lower pole renal calculi. In their uni-
variate analysis, they assessed the important variables for
lower pole calculi clearance after ESWL. They used an ANN
to predict the SFR in the test group. They claimed an ac-
curacy of 92% and an AUC of 0.936. As mentioned by the
authors, urinary transport proved as the most important
variable for lower pole SFR prediction by the ANN. In
addition, infundibuloureteropelvic angle 2, caliceal pelvic
height, and body mass index were also reported as signifi-
cant factors for the ANN’s performance.

Gomha et al. [35] compared an ANN model to a LR
model. The two models were compared in their perfor-
mance in predicting the stone-free status (SFS) at 3
months post ESWL, using 10 inputs for ANN and covariates
for LR. Both models performed adequately, with ANN
outperforming LR in predicting those who fail to respond
to ESWL. Moorthy and Krishnan [36] used an ANN for
the prediction of stone fragmentation, depending on
different features extracted from non-enhanced CT im-
ages. By the method of first order, statistical features like
mean, variance, skewness, and kurtosis were calculated
and evaluated by ANN. The findings showed that, when
the mean was taken into account as the feature of in-
terest, the model prediction demonstrated a sensitivity of
80.7%. Moreover, 90% of the true positive and true nega-
tive instances were accurately identified. A specificity
of 98.4% allowed for the identification of true negative
patients.

In a study by Choo et al. [37], a ML model was proposed
for detecting the SFS after a single ESWL session for ure-
teral stones. They defined success of the single ESWL ses-
sion as the absence of fragments bigger than 2 mm on CT or
plain X-ray images, 2 weeks after the procedure. The model
showed improvement in accuracy performance when more
factors were added. All potential combinations of factors
were included in the construction of the decision models.
With the use of DT analysis, the 15-factor model appeared
to have an accuracy of 92.29% and an average receiver
operating characteristic AUC of 0.951. In this study, the
stone volume seemed to be the most relevant factor for the
prediction of SFS after a single session of ESWL.

Seckiner et al. [38] aiming to predict the SFS and to aid
in procedure planning, used a prototype ANN in a sample of
203 patients who had undergone ESWL. Both regression
analysis and ANN were applied for the SFS determination.



Table 2 Summary of studies regarding AI in the prediction of management outcomes.

Study Objective Study design AI-based outcome Comparator arm outcome

Cummings et al.
[30]

Prediction of SSP Case-control Accuracy of 76% No comparator

Dal Moro et al. [31] Prediction of SSP Case-control 84.5% sensitivity and 86.9%
specificity

Other algorithms with lower
performance

Solakhan et al.
[32]

Prediction of SSP Case-control Accuracy of 92.8% Other algorithms with lower
performance

Park et al. [33] Prediction of SSP Case-control AUCs of 0.859 (stones of
<5 mm) and 0.881 (stones
of 5e10 mm)

AUC of 0.847 (stones of
<5 mm) and 0.817
(stones of 5 mme10 mm)

Poulakis et al. [34] Prediction of lower pole
clearance after ESWL

Case-control Accuracy of 92% No comparator

Gomha et al. [35] Prediction of clearance after
ESWL for ureteral stones

Case-control Accuracy of 77.7% Accuracy of 93.2%

Moorthy and
Krishnan [36]

Prediction of renal stone
fragmentation after ESWL

Case-control Accuracy of 90% No comparator

Choo et al. [37] Prediction of clearance after
ESWL for ureteral stones

Case-control Accuracy of 92.29% No comparator

Seckiner et al. [38] Prediction of clearance after
ESWL for renal stones

Case-control Accuracy of 88.70% No comparator

Mannil et al. [39] Prediction of renal stones
fragmentation after ESWL

Case-control AUC of 0.85 Other algorithms with lower
performance

Yang et al. [40] Prediction of clearance after
ESWL for renal or upper
ureter stones

Case-control AUC of 0.85 for stone-free
status in an interval of 4
weeks; AUC of 0.78 for
stone-free status after
single session ESWL

Other algorithms with
similar performance

Tsitsiflis et al. [41] Prediction of complications
after ESWL for renal or
ureteral stones

Case-control Accuracy of 81.43% No comparator

Handa et al. [42] Quantification of ESWL-induced
renal injury by MRI

Experimental Strong correlation between
model prediction and
morphology (rZ0.9691)

No comparator

Aminsharifi et al.
[43]

Prediction of multiple
outcomes after PCNL

Case-control Accuracy of 91.8%, 83%
regarding stone clearance
and need for blood
transfusion; AUC of 0.915
for stone clearance

AUCs of 0.615 and 0.621 for
stone clearance
according to GSS and
CROES nomograms

Shabaniyan et al.
[44]

Prediction of multiple
outcomes after PCNL

Case-control Accuracy of 94.8% in prediction
of the procedures‘
outcome, 85.2% accuracy in
predicting the need for
stent placement and 95% in
predicting blood transfusion

Multiple decision support
systems achieving higher
performances in
different parameters

Aminsharifi et al.
[45]

Prediction of multiple
outcomes after PCNL

Case-control Accuracy of 82.8%, 92.5%
e98.2%, 81.1%, and 85.8%
for stone clearance, need
for a second procedure,
stent insertion by urine
extravasation, and blood
transfusion

No comparator

Geraghty et al.
[46]

Prediction of multiple
outcomes after PCNL

Case-control Multiple classification models
tested, highest accuracy of
99% and AUCs of 0.99e1.00
achieved for need for
transfusion and infectious
complications

No comparator

(continued on next page)
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Table 2 (continued)

Study Objective Study design AI-based outcome Comparator arm outcome

Zhao et al. [47] Prediction of stone clearance
after PCNL

Case-control AUC of 0.879 AUC of 0.800 for GSS; AUC of
0.844 for S.T.O.N.E.
score

Chen et al. [48] Prediction of sepsis after fURS
or PCNL for proximal
ureteral stones

Case-control AUC of 0.874 for DNN model AUC of 0.783 for LASSO
model

AI, artificial intelligence; AUC, area under the curve; CROES, Clinical Research Office of the Endourological Society; DNN, deep neural
network; ESWL, extracorporeal shockwave lithotripsy; fURS, flexible uretero-renoscopy; GSS, Guy’s stone score; LASSO, least absolute
shrinkage and selection operator; PCNL, percutaneous nephrolithotomy; SSP, spontaneous stone passage; S.T.O.N.E., stone size (S),
tract length (T), obstruction (O), number of involved calices (N), and essence or stone density (E); MRI, magnetic resonance imaging.
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They used 16 features for input values in the NN and the
same parameters for the regression analysis. In this study,
the features that proved to be significant for the stone-free
outcome were stone size, number of ESWL sessions, stone
location, infundibulopelvic angle, and skin-to-stone
distance (SSD). The prediction accuracy rates for the NN
for the three samples of the training group, validation
group, and test group were 99.25%, 85.48%, and 88.70%,
respectively.

In the same scope of predicting the successful SFS after
ESWL, 3D texture features were tested using five ML algo-
rithms [39]. Texture analysis (TA) identifies unique,
measurable variations in stone features that a solely visual
investigation could miss. Mannil et al. [39] in a preliminary
study provided two crucial conclusions. First, 3D-TA offers
additional reliable data on the efficacy of ESWL, in addition
to previously known clinical factors, such as body mass
index (BMI), SSD, and stone size. Second, mean CT atten-
uation values for kidney stones did not predict SWL success.
The discriminatory accuracy increased further when 3D-TA
characteristics were combined with clinical factors, with an
AUC of 0.85 for 3D-TA features and SSD, 0.80 for 3D-TA
features and BMI, and 0.81 for 3D-TA and stone size.

Yang et al. [40] trained a ML model trained with DT al-
gorithms in a total of 358 non-contrast CT scans, from pa-
tients who underwent ESWL for renal and upper ureter
stones. They used three DT-based algorithms, the random
forest, the extreme gradient boosting trees (XGBoost), and
the light gradient boosting method (LightGBM) for the
prediction of SFS and one-session success. In this study, the
DT-based algorithms were chosen due to their better per-
formance in prediction in small sample training datasets.
The authors claimed that median stone density and stone
volume were the most important variables for the
procedure outcome. The proposed models predicted the
SFR with a maximum accuracy of 87.9% (LightGBM) and the
one-session success with an accuracy of more than 77%.

Tsitsiflis et al. [41] created an ANN for the prediction and
the procedure outcome when several ESWL features are
evaluated. They collected medical data from 716 patients,
of which 549 were used for training purposes and 167 for
testing purpose. In the parameter importance analysis,
diabetes and hydronephrosis had a significant predictive
value for complication occurrence, while for the procedure
outcome, the stone location was of the highest importance.
The ANN model achieved a performance rate of 98.72% at
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the end of the training set, with a PPV of 83.82% and an
accuracy of 81.43% in complication prediction.

In the scope of predicting the hemorrhagic injury after
ESWL, Handa et al. [42] evaluated the injury lesion vol-
umes in ex vivo kidneys by using a magnetic resonance
imaging and multi-spectral neural network model. Quan-
tifying renal damage lesion volumes as a result of ESWL
was claimed to be quick and accurate with the use of
magnetic resonance imaging and the multi-spectral neural
network classifier.

3.3. Prediction of outcome of endourological
procedures

Prediction of the SFR and other postoperative parameters
of patients with kidney stones, planned for percutaneous
nephrolithotomy (PCNL), is still under debate. Throughout
the years, several scores have been developed in order to
categorize renal calculi and estimate SFR. On the other
hand, AI and its subtypes seem to present with comparable,
or even superior results when it comes to postoperative
outcome prediction (Table 2).

Aminsharifi et al. [43] developed an ANN model as a
predictor of four outcomes after PCNL: SFR, need for
repeat lithotripsy, need for ureteral stent insertion due to
urine leakage, and need for blood transfusion. Sensitivity
rates vary from 81% to 92%, with stone burden and
morphometry being the most significant preoperative
characteristics that affect all four outcomes. Therefore,
the ANN model serves as a reliable tool for predicting
certain postoperative features. Shabaniyan et al. [44]
investigated several methods, of which the SVM is a
frequently implemented ML model for regression and clas-
sification along with the sequential forward selection,
which adds features to a list of empty candidates until a
maximum number of features that do not reduce the cri-
terion, and Fischer discriminant analysis is the optimal
combination to improve system accuracy in predicting the
four aforementioned outcomes. Aminsharifi et al. [45] also
developed an SVM model and compared its results with
respective ones from the Guy’s stone score (GSS) and
Clinical Research Office of the Endourological Society
models. The AUC of the ML software (0.915) was signifi-
cantly larger than the AUC of both GSS (0.615) and Clinical
Research Office of the Endourological Society (0.621) no-
mograms. Furthermore, the ML model provided a sensitivity
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and an accuracy rate of more than 82% and 80%, respec-
tively, in successfully predicting all postoperative examined
outcomes. Geraghty et al. [46] developed five ML models
and DL models to assess the correlation between 43 patient
preoperative characteristics and 11 outcomes. Of those
outcomes, post-PCNL infection and the need for transfusion
were successfully predicted in most of the patients. Each of
the ML and DL implemented models achieved AUCs for
these two outcomes larger than 0.90 and 0.77, respectively.
Nonetheless, the authors underlined the inability of these
models to safely process incomplete datasets and very rare
outcomes, leading to poor predictions. They concluded that
imaging findings may provide AI algorithms with data
invaluable for the prediction of postoperative outcomes.

Zhao et al. [47] compared four ML models, including
SVM, with the GSS and stone size (S), tract length (T),
obstruction (O), number of involved calices (N), and
essence or stone density (E) (S.T.O.N.E.) nephrolithometry
score system. Although all four models successfully pre-
dicted SFRs after PCNL, they provided non-inferior results
compared to GSS and S.T.O.N.E. nephrolithometry score
AUCs for the ML models ranged from 0.803 to 0.879, while
the AUCs of the GSS and S.T.O.N.E. nephrolithometry score
were 0.800 and 0.844, respectively. Sensitivity values were
also comparable. ML models were only superior to the
S.T.O.N.E. nephrolithometry score system in terms of ac-
curacy (minimum ML accuracy: 80.3%; S.T.O.N.E. accuracy:
78.8%). These findings come in line with previous author
statements which summarized that there is a need for a
nationwide collaboration among physicians, statisticians,
and computer experts in order to optimize the use of AI in
favor of its individual, especially the patients.

Chen et al. [48] used a DNN to estimate and predict the
risk factors for sepsis after flexible ureteroscopic litho-
tripsy or PCNL. Medical data from 847 patients who met
the inclusion criteria were reviewed. Sepsis incidence was
estimated at 5.9% after flexible ureteroscopic lithotripsy
or PCNL. Preoperative CT scans were performed on all
patients. The least absolute shrinkage and selection
operator model and DNN model were compared based on
preoperative sepsis prediction in ureteral calculi patients.
Although the least absolute shrinkage and selection
operator model successfully predicted 26 variables, the
DNN model outperformed it, with AUCs of 0.920 and 0.874
accounting for the internal and external validation,
respectively.

4. AI for the optimization of the operative
procedure

Results of the operative management of stone disease
depend on a numerous set of factors, which frequently
interact with each other, so that defining the optimal
constellation of these factors remains a difficult task to
perform. Especially the optimal setting of intraoperative
factors comprises an essential step for the uncomplicated
and successful completion of the respective procedures. AI
has shown promising results in studying the complicated
intraoperative environment to optimize and guide sur-
geons’ preferences and strategy (Table 3).
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4.1. Optimization of ESWL procedure

In 2003, Hamid et al. [49] collected the data from 82 pa-
tients with renal stones treated by ESWL. These data
included various parameters, such as factors of urine
chemistry, radiological features of stones, and ESWL set-
tings. An ANN algorithm was constructed and trained
through the introduction of the above data to optimize the
prediction of the ESWL shockwave number needed for op-
timum fragmentation. The ANN algorithm identified all
patients, who needed a number of ESWL shockwaves
beyond standard protocol. Similarly, Goyal et al. [50]
trained and tested an ANN algorithm through the data of
196 patients (training set) and 80 patients (validation set)
with kidney stones treated by ESWL. The data included
parameters, such as stone size and burden, number of ESWL
sessions, and factors of urine chemistry. Shockwave power
predicted by ANN algorithm and number for optimum stone
fragmentation were very strongly correlated with the
observed shockwave power and number needed during the
ESWL procedures (r2Z0.8343, r2Z0.9329, respectively).

Mannil et al. [51] examined by CT a set of 34 urinary
stones under in vitro settings in order to associate the stone
features with the number of shockwaves needed for suc-
cessful fragmentation. ML-based model managed to
discriminate with a sensitivity of 94% and a specificity of
59% the subset of stones, which were fragmented with less
than 72 shockwaves.

In a recent report, a DL model was constructed and
trained to produce personalized ESWL protocols, which
included the ESWL settings (power lever, shockwave rate,
and total number) for each of the steps of every ESWL
session [52]. The data used for the model were extracted
from the best practices of ESWL treatments recorded in
the International Stone Registry. The comparison of the DL
model with standard methods and models for defining
ESWL settings for each ESWL step showed the superiority
of the DL model.

Muller et al. [53] trained a CNN algorithm to recognize
a kidney stone in US images taken during the ESWL pro-
cedures of 11 patients. Subsequently, they investigated
the effect of directing ESWL shockwaves through optical
recognition of stone by the above algorithm. The study
concluded that an AI-controlled ESWL procedure
would demonstrate an increased stone hit rate of 75.3%
and a mishit reduction by 67.1% compared to the
operator-directed ESWL procedure. An increase in patient
number for training the above algorithm would further
improve the accuracy in directing ESWL shockwaves.

4.2. Optimization of endourological procedures

Regarding the PCNL procedure, Taguchi et al. [54] evalu-
ated the feasibility of robot-assisted fluoroscopy guide
puncture and compared the above method with the
operator-dependent US-guided puncture. The system used
for robot-assisted puncture was based on computer vision
software and AI to analyze fluoroscopic images and direct
needle puncture accordingly. The success rate for robotic-
assisted puncture was 100%, which was superior to the



Table 3 Summary of studies regarding the contribution of AI in the optimization of the operative procedure.

Study Objective Study design AI-based outcome Comparator arm outcome

Hamid et al. [49] Optimization of ESWL
protocol

Cross-sectional Accuracy of 75% for predicting
shockwave number and 100%
for predicting patients needing
shockwave number beyond
protocol

No comparator

Goyal et al. [50] Optimization of ESWL
protocol

Cross-sectional Correlation coefficients for power
level and shockwave number of
0.8343 and 0.9329,
respectively

Correlation coefficients for
power level and shockwave
number 0.0195 and 0.5726,
respectively

Mannil et al. [51] Optimization of ESWL
protocol

Experimental AUC of 0.838 in the prediction of
fragmentation with less than 72
shockwaves

Other multivariate models with
lower performance

Chen et al. [52] Optimization of ESWL
protocol

Cross-sectional Prediction accuracy values for
power level, shockwave rate of
98.8%, 98.1%, respectively

Other multivariate models with
lower performance

Muller et al. [53] Optimization of ESWL
protocol

Cross-sectional Shockwave hit rate of 75.3% Shockwave hit rate of 55.2%

Taguchi et al. [54] Optimization of PCNL
puncture

Experimental Puncture success rate of 100%;
puncture time of 35 s

Puncture success rate of 70.6%;
puncture time of 46 s

Wang et al. [55] Optimization of PCNL
puncture

Experimental Average recognition precision of
79% (SE: 4%) for cortex, 85%
(SE: 6%) for medulla, and 91%
(SE: 5%) for calyx

No comparator

Li et al. [56] Optimization of PCNL
puncture

Cross-sectional ANN model achieved a better
localization and puncture
method selection compared to
the MVRA model and the
surgeon’s experience

No comparator

Jeong et al. [57] Optimization of RIRS
safety profile

Experimental Recognition of tissue exposure to
laser energy with accuracy of
95% and latency time of 0.5 s

No comparator

AI, artificial intelligence; ANN, artificial neural network; ESWL, extracorporeal shockwave lithotripsy; MVRA, multiple variable regression
analysis; PCNL, percutaneous nephrolithotomy; RIRS, retrograde intrarenal surgery; SE, standard error.
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respective rate of 70.6% for operator-dependent puncture.
Additional advantages of the method were the shortening
of needle puncture time and total procedure duration.

Another report proposed an alternative method for
guiding PCNL puncture based on AI and optical coherence
tomography (OCT), a novel imaging modality, which can
depict subsurface tissue at depth of several millimeters
[55]. OCT can be applied through mini-probes, which can be
adapted to the puncture needle of PCNL. In this study, a DL
algorithm was constructed and trained to recognize the
unique OCT patterns of renal cortex, medulla, and calyx
with high accuracy (precision of 79%�4%, 85%�6%, 91%�5%
for mean�standard error for cortex, medulla, and calyx,
respectively). The above method proved to be effective in
recognizing the type of tissue ahead of the PCNL needle and
in guiding the puncture accordingly.

In 2016, Li et al. [56] performed a discrimination analysis
to define the ideal imaging modality for performing PCNL
puncture. An ANN algorithm was constructed and trained
with the prospectively collected data from patients who
had undergone PCNL surgery. The trained algorithm showed
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that the combination of X-ray with US guidance was bene-
ficial in the case of complex or small stones, while the
combination was not significantly better compared to one
of the above methods for treating large or simple stones.
Recently, Jeong et al. [57] developed a monitoring
system for reducing tissue exposure to laser energy during
retrograde intrarenal surgery, based on measuring the
specific shockwave form produced during the interaction of
laser with a soft (tissue) or hard (stone) material and AI.
Shockwave measurement was performed through an
accelerometer adapted to the ureteroscope and the data
were produced in a simulated surgical environment. The
above data were introduced in a ML model in order to
enhance its predicting ability for tissue exposure and sub-
sequent damage by laser energy [57]. The trained model
was capable to warn surgeon of damage-inducing tissue
exposure to laser energy with a latency time of 0.5 s and an
accuracy of 95%. Further optimization of the model would
shorten the latency time and increase its accuracy. More-
over, the same methodology seems applicable to additional
operative procedures of endourology.
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5. AI for the elucidation of stone disease
chemistry and composition

Prediction of primary stone disease or recurrent develop-
ment of urolithiasis is considered of utmost importance in
the attempt to reduce its incidence and the subsequent
consequences on renal function. AI has been proposed as
one of the more effective methods to elucidate the
complicated interaction between various clinical and
biochemical factors, whose aberration is associated with
predisposition for developing stone disease (Table 4).

5.1. Association of stone disease risk with blood,
urine chemistry, and other clinical factors

According to a study comparing the data of 119 male pa-
tients with 96 controls by using ANN, calcium oxalate
(CaOx) supersaturation and urea concentration in urine
were the strongest predictors of developing calcium stones
[58]. Another report on the predisposition for calcium
stones compared the clinical and biochemical data of 119
male and 59 female patients with respective healthy con-
trols by using ANN and concluded that the most
important predisposing factors were CaOx supersaturation
and 24 h-excreted urea [59]. Interestingly, the study
emphasized that these predisposing factors were common
for male patients regardless of family history and for fe-
male patients with a family history of stone disease [59].

Ensemble learning was applied in a recent study to
extract the relevant features across a data set with 42
clinical and biochemical features and to construct a pre-
dicting model for developing stone disease with an ac-
curacy of 97.1% [60]. Especially for kidney stones larger
than 20 mm, another model based on ML algorithms
defined hypertension, older age, decreased CaOx super-
saturation, and a higher percentage of protein in stone
composition as the strongest predictors for developing
kidney stones of the above size category [61]. Impor-
tantly, in this report, AI-based prediction was
adequate but so accurate as the result of LR. Aberrations
of 24 h-excreted urine analytes are recognized as a strong
predictor of stone disease, but the underlying clinical
factors are yet mostly unknown.

An ensemble model, based on data from electronic
health records, achieved to predict these aberrations with
high accuracy [62]. The clinical factors, which were more
strongly associated with these aberrations were BMI, age,
and gender. Regarding the risk of recurrent stone disease,
an ANN approach was applied on the clinical and
biochemical data of 80 patients. Among the available pa-
rameters, natrium, kalium in serum and natrium, phos-
phorus, and CaOx in urine were included in a model, which
predicted approximately 90% of the recurrence events [63].

Genetic factors comprise another recognized predis-
posing factor for stone disease. According to a study
comparing genetic and environmental data of a patient
group with respective controls, the application of ANN
showed the highest discriminating ability among the
comparing groups, since it classified successfully 89% of
the participants [64].
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Using microscopy images and an identification procedure
based on a convolution neural network, another study re-
ported an improved rate (74%) of recognition of CaOx
crystals in urine sediment, which are considered as a pre-
dictive factor for developing CaOx stones, compared to the
standard identification procedure [65].

Recently, another report, based on electron microscopy
images and ML-based analysis, evaluated crystallization dy-
namics of CaOx under the effect of candidate crystallization
inhibitors and revealed the effectiveness of myoinositol
hexakisphosphate analogues, which can be applied for the
prevention of CaOx nephropathies or stones [66].

5.2. Recognition of stone composition by CT

Besides the increased stone detection rate, radiographic
features in CT examination represent a valuable source for
the extrapolation of information relating to stone compo-
sition. This inherent advantage of CT examination can be
further optimized through the application of AI.

According to a study, 32 ex vivo kidney stones with
known composition were examined through a CT protocol,
which produced 52 variables for each stone. After training
five multiparametric algorithms, including ANN and SVM
algorithms with data of these variables, distinguishing uric
acid (UA) from non-UA stones achieved a maximum accu-
racy of 100%, while distinguishing between the non-UA
subtypes was 75% accurate [67].

The same researchers applied another protocol of rapid
voltage switching, single source, dual-energy CT on 38
ex vivo renal stones, which produced data of 17 variables
for each stone. By using the same multiparametric algo-
rithms, distinguishing between UA and non-UA stones was
100% accurate, while the best algorithm for distinguishing
among non-UA subtypes was 88% accurate [68].

A third study on distinguishing between UA and non-UA
stones was based on applying CT TA in order to train SVM
classifiers and construct a respective model, which ach-
ieved an AUC of 0.965 (sensitivity of 94.4%, specificity of
93.7%) in the correct characterization of UA stones [69].

Große Hokamp et al. [70] examined 200 kidney stones of
known composition with a spectral detector CT scanner,
applying a number of different protocols. The produced
data were used to train and validate a NN algorithm to
distinguish among different stone compositions. The final
model achieved accuracy rates of 91.1% on a per-voxel
basis, and 87.1%e90.4% on independently tested acquisi-
tions. Interestingly, the model was accurate in predicting
the main component even in compound stones [70].

A recent publication by Tang et al. [71] reported the
results on distinguishing between calcium oxalate mono-
hydrate (COM) and non-COM stones by radiographic fea-
tures of unenhanced and analysis through an AI model. The
initial set of 1218 radiographic features was diminished to
eight significant features, and the final model based on
these features achieved an accuracy of 88.3% (AUC: 0.933;
sensitivity: 90.5%; specificity: 84.3%). The above results
were based on the in vivo radiographical characterization
of stones, which makes the results applicable for the pre-
operative evaluation of patients [71].



Table 4 Summary of studies on the contribution of AI in the elucidation of stone disease chemistry and composition.

Study Objective Study design AI-based outcome Comparator arm
outcome

Dussol et al. [58] Risk factors for
calcium stones

Case-control Classification accuracy between
stone formers and controls:
74.4%

75.8%

Dussol et al. [59] Risk factors for
calcium stones

Case-control CaOx supersaturation and 24 h-
urea for all men and women
with a family history

No comparator

Kazemi and
Mirroshandel [60]

Risk of nephrolithiasis Cohort Accuracy of 97.1% Other classifiers with
lower accuracy

Chen et al. [61] Risk of forming renal
stones of >2 cm

Cohort AUC of 0.69 AUC of 0.74

Kavoussi et al. [62] Prediction of 24 h
urine
abnormalities
relevant for stone
disease

Cohort Higher accuracy in prediction of
urine volume, uric acid, and
natrium abnormalities

Higher accuracy in
prediction of pH and
citrate abnormalities

Caudarella et al. [63] Risk of stone disease
recurrence

Case-control Accuracy of 88.8% Accuracy of 67.5%

Chiang et al. [64] Risk for stone disease Case-control Accuracy of 89% Accuracy of 74%
Xiang et al. [65] Identification of CaOx

crystallization in
urine sediment

Cross-sectional Accuracy of 74% Accuracy of 74%

Kletzmayr et al. [66] Recognition of
crystallization
inhibition

Experimental IP6 analogues inhibit effectively
CaOx crystallization

No comparator

Kriegshauser et al.
[67]

Stone composition by
CT

Cross-sectional Accuracy of 97% (UA instead of
non-UA stones) and 72% among
non-UA stones

Other multivariate
models with lower
performance

Kriegshauser et al.
[68]

Stone composition by
CT

Cross-sectional Accuracy of 100% (UA instead of
non-UA stones) and 88% among
non-UA stones

Other multivariate
models with lower
performance

Zhang et al. [69] Stone composition by
CT

Cross-sectional AUC of 0.965 (SD: 0.029) for UA
instead of non-UA stones

Sensitivity of 94.4% and
specificity of 93.7%
for model using CT TA

Große Hokamp et al.
[70]

Stone composition by
CT

Cross-sectional Accuracy of 91.1% on a per-voxel
basis; accuracy of 87.1%e90.4%
on independently tested
acquisitions

No comparator

Tang et al. [71] Stone composition by
CT

Cross-sectional Accuracy of 88.3% for COM instead
of non-COM stones
(AUCZ0.933)

No comparator

Black et al. [72] Stone composition by
visual image

Cross-sectional Prediction precision for each stone
composition from 71.43%
(struvite) to 95% (COM stones)

No comparator

Lopez et al. [73] Stone composition by
visual image

Cross-sectional Precision of 93%e98%, depending
on stone type

Other multivariate
models with lower
performance

El Beze et al. [74] Stone composition by
visual image

Cross-sectional PPV of 96%e99%, depending on
stone type

PPV of 88%e99%,
depending on stone
type

Ochoa-Ruiz et al. [75] Stone composition by
visual image

Cross-sectional Overall precision of 97% Overall precision of 96%

Mendez-Ruiz et al.
[76]

Stone composition by
visual image

Cross-sectional Overall accuracy of 74.38% and
88.52%, depending on the
image capturing method

Overall accuracy of 45%

Kim et al. [77] Stone composition by
visual image

Cross-sectional AUC of 0.98e1.00, depending on
stone type

Other multivariate
models with lower
performance

(continued on next page)
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Table 4 (continued )

Study Objective Study design AI-based outcome Comparator arm
outcome

Fitri et al. [78] Stone composition by
microtomography

Cross-sectional Overall accuracy of 99.59% No comparator

Saçlı et al. [79] Stone composition by
dielectric
properties

Cross-sectional Overall accuracy of 98.17% No comparator

Cui et al. [80] Stone composition by
Raman
spectroscopy

Cross-sectional Overall accuracy of 96.3% No comparator

Onal and Tekgul [81] Stone composition by
smartphone
microscopy

Cross-sectional Overall accuracy of 88% No comparator

AI, artificial intelligence; AUC, area under the curve; CaOx, calcium oxalate; CT, computed tomography; TA, texture analysis; COM,
calcium oxalate monohydrate; IP6, myoinositol hexakisphosphate; PPV, positive predictive value; UA, uric acid; SD, standard deviation.
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5.3. Recognition of stone composition by
endoscopic images

Intraoperative images of stones can provide important vi-
sual information to the experienced endourologist relating
to stone composition, which in turn can affect various
surgery parameters, e.g., the settings of the energy
generator used for the lithotripsy. This intraoperative stone
characterization may become more precise by the appli-
cation of visual processing through AI methods. A study on
the composition prediction based on macroscopic stone
appearance reported an overall prediction rate of 85% for
every composition class by training a CNN algorithm on a
total of 63 kidney stones. The image of each stone sample
of the above set was captured with a digital camera and
depicted the surface and the inner core of each stone [72].

Lopez et al. [73] compared several classification
methods for intraoperative recognition of stone type, based
on 90 fragment surface images, 87 fragment cross-section
images, and respective algorithms. The best classification
method was based on a deep CNN algorithm and reached a
precision of 98% for the four stone classes included.
Another study compared the classification performance of
simple algorithms, based on texture and color criteria, with
DL-based methods by using a large number of stone surface
and stone section images, captured through ureteroscopy.
The above images represented six chemical classes of
stones, and DL-based methods demonstrated a superior
predicting ability for the four of the above classes, namely
whewellite, UA, struvite, and cysteine [74].

Ochoa-Ruiz et al. [75] published a report aiming to
examine the feasibility of predicting stone composition by
capturing respective stone images during ureteroscopic pro-
cedures. A set of 94 surface images and 87 section images of
stones with known composition was used to compare the
predicting performance of six shallow ML methods and three
DL algorithms. DL algorithms achieved superior performance,
reaching a precision rate of 97% and demonstrating a slight
advantage over the methods based on color and texture
features.
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According to a recent study, classical ML failed to
perform adequately when tested in a different dataset than
the one used for constructing and training the respective
model. To form an algorithm with generalized efficacy in
the classification of stone composition based on stone im-
ages, the author proposed the use of meta-learning, a
subfield of ML, which can contribute to a significantly
improved discriminating performance compared with DL
[76]. Kim et al. [77] used the largest set of stone images
captured by a digital camera, depicting 1332 stones of 31
different chemical compositions. Among them, images of
965 stones, representing the four more frequent classes,
were used to construct and train a number of models, based
on CNNs. The best-performing model demonstrated high
accuracy for all of the included chemical classes, with an
AUC value of at least 0.97 [77].

5.4. Recognition of stone composition by other
innovative methods

Several studies reported significant results on discrimi-
nating stone composition by introducing the data produced
through various innovative methods in AI-based models.
These innovative methods were focusing mostly on the
physical and chemical properties of urinary stones.

Fitri et al. [78] produced a set of 2430 images through
microtomography of 30 urinary stones from different pa-
tients. A CNN algorithm was constructed to classify the
above stone set into three main compositions, namely
calcium, UA, and mixture stones. The final model reached
an accuracy of 98.52% in classifying into the above classes.
Saçlı et al. [79] exploited the dielectric properties of 105
kidney stones of known composition to build a dataset with
the respective parameters. The above dataset was used to
construct and train a classification ML-based model, which
reached an accuracy of 98.17%. According to the authors,
the method combines the high accuracy of the reference
methods in the analysis of urinary stones with the reduced
cost and the rapid processing procedure. Raman spectros-
copy represents an innovative method for determining
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stone composition by examining the spectral characteristics
of the different components. According to a study, the
respective measurements of a set of 135 kidney stones by
Raman spectroscopy were processed through ML techniques
to construct a number of models with high accuracy (96.3%)
in classifying the stones into the four main chemical cate-
gories of the study [80]. The above procedure was consid-
ered beneficial compared to existing methods in terms of
simplicity and cost efficiency. Onal and Tekgul [81] re-
ported an innovative approach for determining stone
composition by combining microscopy images of stones with
a CNN model. A set of 37 surgically extracted kidney stones
was examined with a smartphone microscope and micro-
scopic images were captured from six different locations
of each stone. A total of 222 images were used to train
the classification model, which achieved an accuracy of 88%
in predicting the stone composition among the four main
classes of the study, namely CaOx, UA, cysteine, and
struvite.
6. Conclusion

The above analysis of the available reports demonstrates
that the application of AI in stone disease comprises a
rapidly evolving management option, which still runs in the
test phase. As expected, the evolvement of this application
follows the progress of AI development through hardware
and software innovations. Indeed, the number of available
reports published in the decade from 2000 to 2010 was only
nine, while in the next decade this number increased to 35
publications. For the current decade, 25 reports were
published already in 2021 and 2022, which represents an
acceleration in the respective research area. Regarding the
coverage of the stone disease subfields, the majority of the
main issues in stone disease diagnosis and management
have already been targeted for further optimization by the
application of AI. In our opinion, the further elucidation of
the dynamic interplay among environmental, metabolic,
and genetic factors in defining the individual risk for stone
disease represents the top priority. The complicated data
constellation of the above factors could be deployed to
develop AI algorithms for the recognition of high-risk stone
formers and the planning of targeted pharmaceutical pre-
vention of stone recurrence. Another research gap is the
further optimization of lithotripsy procedures, by applying
AI algorithms to adjust intraoperative factors, such as the
parameters of the laser generators, or the equipment se-
lection depending on patient anatomic characteristics or
stone physical characteristics.

Regarding the limitations of the available literature on
the application of AI in stone disease, most of the studies
only reported the results of the AI algorithm in a diagnostic
or therapeutic procedure without comparison with the
current standards in the respective subfields. Moreover, the
results of the studies were mostly validated in the same
patient cohorts, which limits their generalizability. The
evidence level of the included studies does not exceed
level 3 and prospective validations, or at least external
validations are needed to test the applicability of AI in the
real-life management of the stone disease. From the total
of the included studies in the current review, it is obvious
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that only the diagnostical applications, which mostly are
related to radiology are close to implementation in uro-
logical practice, while in many reports, the authors claimed
that the function of their proposed model could be further
optimized after the introduction of more data. Lastly, the
heterogeneity of study design and outcome reporting
makes the results of the included studies unsuitable for
quantitative analysis and data pooling.

AI provides a learning capacity to computing systems,
which creates new perspectives not only in several scien-
tific domains but also in everyday life. In medicine, AI is
considered an important decision-supporting factor with
high potential in specific areas of health care. These areas
include the clinical field, which embraces the diagnostic,
prognostic, and predictive role of AI, the pharmaceutical
field, which relates to the targeted discovery of drugs and
the in-silico clinical trials, and the public health, where AI
is applied in epidemic outbreak prediction and the config-
uration of public health policy [82]. Moreover, AI is
considered one of the pillars for the wide application of
precision medicine, since the continuously growing
biomedical data, processed by the constantly evolving AI
systems, are expected to result in new disease taxonomies,
based on predictors of various nature, such as genomic,
environmental [83]. The above effect of AI configures the
future of urology, a specialty that is technology-driven and
at the forefront of innovation. Data related to various
urologic conditions are produced at an exponentially
increasing rate, forming an amount described by the term
“Big Data”, which represents the data volume that is not
manageable by traditional computing methods but only by
the AI methods [84]. The combination of “Big Data” and AI
is expected to create a different frame of urological prac-
tice, where the computing systems will be used to inform,
enhance, and complement the clinicians’ decisions, while
the urological training will confront new challenges since
the urologist will have to be familiar with the application of
AI in his practice [85].

Regarding the current state of AI introduction in medi-
cine, a review identified 222 AI-based medical devices
approved in the USA, while the respective number for
Europe was 240 [86]. According to the authors of the above
report, there is an enormous increase in the AI-based de-
vice availability in recent years, since the numbers of
approved devices in the years 2015, 2017, and 2019 were 9,
32, 77 for the USA and 13, 26, 100 for Europe,
respectively. Radiology comprises the leading medical
specialty for AI-based devices (nZ129), followed by cardi-
ology (nZ40), and neurology (nZ21) [86]. No urologic de-
vice in the approved status was reported in this study.

The wide application of AI in urology assumes not only
the further improvement of AI methods but also the fa-
miliarity of the clinicians with AI, which depends on the
trustworthiness, explainability, usability, and transparency
of AI methods [87]. Moreover, a regulatory frame for the
application of AI is needed from the public organizations,
who are responsible for the legal regulations regarding
health care provision. In this direction, Food and Drug
Administration and European Commission have already
published the legal conditions and prerequisites to protect
human fundamental rights and guide the use of medical AI
accordingly [88,89]. From the view of the public, a study
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found that the participants had equal trust in AI versus
clinicians regarding the diagnostic procedure, while the 94%
of them would pay for a review of an imaging diagnostic
procedure by an AI method [90]. On the contrary, the ma-
jority of the participants would feel uncomfortable with
the perspective of automated robotic surgery. For the
application of AI methods through “Big Data”, large global
corporations invest enormous amounts of money, while, at
the same time, public funding moves still at low levels [91].
Since patients are interested in AI methods, at least for
diagnostic purposes, and have the greatest trust in health
providers, it is the responsibility of the latest and of the
public regulatory authority to offer trustworthy and
meaningful medical AI applications.
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[79] Saçlı B, Aydınalp C, Cansız G, Joof S, Yilmaz T, Çayören M, et al.
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[89] Stöger K, Schneeberger D, Holzinger A. Medical artificial in-
telligence: the European legal perspective. Commun ACM
2021;64:34e6.

[90] Stai B, Heller N, McSweeney S, Rickman J, Blake P, Vasdev R,
et al. Public perceptions of artificial intelligence and robotics
in medicine. J Endourol 2020;34:1041e8.

[91] Schoenthaler M, Boeker M, Horki P. How to compete with
Google and Co.: big data and artificial intelligence in stones.
Curr Opin Urol 2019;29:135e42.

http://refhub.elsevier.com/S2214-3882(23)00038-3/sref57
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref57
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref57
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref57
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref58
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref58
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref58
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref58
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref59
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref59
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref59
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref59
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref59
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref60
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref60
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref60
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref60
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref61
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref61
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref61
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref61
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref61
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref61
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref61
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref62
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref62
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref62
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref62
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref63
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref63
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref63
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref63
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref64
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref64
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref64
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref64
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref64
https://doi.org/10.1109/ICACTM.2019.8776769
https://doi.org/10.1002/advs.201903337
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref67
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref67
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref67
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref67
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref67
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref68
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref68
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref68
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref68
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref68
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref68
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref69
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref69
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref69
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref69
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref70
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref70
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref70
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref70
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref70
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref70
https://doi.org/10.21037/atm-21-965
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref72
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref72
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref72
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref72
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref73
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref73
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref73
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref73
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref73
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref74
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref74
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref74
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref74
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref74
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref75
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref75
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref75
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref76
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref76
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref76
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref76
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref76
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref77
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref77
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref77
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref77
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref78
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref78
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref78
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref78
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref78
https://doi.org/10.1016/j.compbiomed.2019.103366
https://doi.org/10.1016/j.compbiomed.2019.103366
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref80
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref80
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref80
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref80
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref81
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref81
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref81
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref81
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref82
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref82
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref82
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref82
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref83
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref83
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref83
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref83
https://doi.org/10.1177/1756287221998134
https://www.urologynews.uk.com/features/features/post/rise-of-the-machines-will-artificial-intelligence-replace-the-urologist
https://www.urologynews.uk.com/features/features/post/rise-of-the-machines-will-artificial-intelligence-replace-the-urologist
https://www.urologynews.uk.com/features/features/post/rise-of-the-machines-will-artificial-intelligence-replace-the-urologist
https://doi.org/10.1016/S2589-7500(20)30292-2
https://doi.org/10.1016/S2589-7500(20)30292-2
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref87
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref87
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref87
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref87
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref87
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref87
https://www.fda.gov/media/145022/download
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref89
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref89
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref89
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref89
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref90
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref90
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref90
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref90
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref91
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref91
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref91
http://refhub.elsevier.com/S2214-3882(23)00038-3/sref91

	Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review
	1. Introduction
	2. AI in the detection of stone disease
	2.1. Optimization of stone disease detection by CT
	2.2. Optimization of stone disease detection by ultrasound (US)
	2.3. Optimization of stone disease detection by X-ray

	3. AI in the prediction of management outcomes
	3.1. Prediction of outcome of conservative management
	3.2. Prediction of extracorporeal shockwave lithotripsy (ESWL) outcome
	3.3. Prediction of outcome of endourological procedures

	4. AI for the optimization of the operative procedure
	4.1. Optimization of ESWL procedure
	4.2. Optimization of endourological procedures

	5. AI for the elucidation of stone disease chemistry and composition
	5.1. Association of stone disease risk with blood, urine chemistry, and other clinical factors
	5.2. Recognition of stone composition by CT
	5.3. Recognition of stone composition by endoscopic images
	5.4. Recognition of stone composition by other innovative methods

	6. Conclusion
	Author contributions
	Conflicts of interest
	Conflicts of interest
	References


