82 research outputs found

    Statistical atmospheric downscaling for rainfall estimation in Kyushu Island, Japan

    No full text
    International audienceThe present paper develops linear regression models based on singular value decomposition (SVD) with the aim of downscaling atmospheric variables statistically to estimate average rainfall in the Chikugo River Basin, Kyushu Island, southern Japan, on a 12-hour basis. Models were designed to take only significantly correlated areas into account in the downscaling procedure. By using particularly precipitable water in combination with wind speeds at 850 hPa, correlation coefficients between observed and estimated precipitation exceeding 0.8 were reached. The correlations exhibited a seasonal variation with higher values during autumn and winter than during spring and summer. The SVD analysis preceding the model development highlighted three important features of the rainfall regime in southern Japan: (1) the so-called Bai-u front which is responsible for the majority of summer rainfall, (2) the strong circulation pattern associated with autumn rainfall, and (3) the strong influence of orographic lifting creating a pronounced east-west gradient across Kyushu Island. Results confirm the feasibility of establishing meaningful statistical relationships between atmospheric state and basin rainfall even at time scales of less than one day. Keywords: atmospheric downscaling, precipitation, rainfall, singular value decomposition, southern Japa

    Relationships Between Pacific and Atlantic Ocean Sea Surface Temperatures and U.S. Streamflow Variability

    Full text link
    An evaluation of Pacific and Atlantic Ocean sea surface temperatures (SSTs) and continental U.S. streamflow was performed to identify coupled regions of SST and continental U.S. streamflow variability. Both SSTs and streamflow displayed temporal variability when applying the singular value decomposition (SVD) statistical method. Initially, an extended temporal evaluation was performed using the entire period of record (i.e., all years from 1951 to 2002). This was followed by an interdecadal-temporal evaluation for the Pacific (Atlantic) Ocean based on the phase of the Pacific Decadal Oscillation (PDO) (Atlantic Multidecadal Oscillation (AMO)). Finally, an extended temporal evaluation was performed using detrended SST and streamflow data. A lead time approach was assessed in which the previous year\u27s spring-summer season Pacific Ocean (Atlantic Ocean) SSTs were evaluated with the current water year continental U.S. streamflow. During the cold phase of the PDO, Pacific Ocean SSTs influenced streamflow regions (southeast, northwest, southwest, and northeast United States) most often associated with El Niño–Southern Oscillation (ENSO), while during the warm phase of the PDO, Pacific Ocean SSTs influenced non-ENSO streamflow regions (Upper Colorado River basin and middle Atlantic United States). ENSO and the PDO were identified by the Pacific Ocean SST SVD first temporal expansion series as climatic influences for the PDO cold phase, PDO warm phase, and the all years analysis. Additionally, the phase of the AMO resulted in continental U.S. streamflow variability when evaluating Atlantic Ocean SSTs. During the cold phase of the AMO, Atlantic Ocean SSTs influenced middle Atlantic and central U.S. streamflow, while during the warm phase of the AMO, Atlantic Ocean SSTs influenced upper Mississippi River basin, peninsular Florida, and northwest U.S. streamflow. The AMO signal was identified in the Atlantic Ocean SST SVD first temporal expansion series. Applying SVD, first temporal expansions series were developed for Pacific and Atlantic Ocean SSTs and continental U.S. streamflow. The first temporal expansion series of SSTs and streamflow were strongly correlated, which could result in improved streamflow predictability

    A Lagrangian Identification of the Main Sources of Moisture Affecting Northeastern Brazil during Its Pre-Rainy and Rainy Seasons

    Get PDF
    This work examines the sources of moisture affecting the semi-arid Brazilian Northeast (NEB) during its pre-rainy and rainy season (JFMAM) through a Lagrangian diagnosis method. The FLEXPART model identifies the humidity contributions to the moisture budget over a region through the continuous computation of changes in the specific humidity along back or forward trajectories up to 10 days period. The numerical experiments were done for the period that spans between 2000 and 2004 and results were aggregated on a monthly basis. Results show that besides a minor local recycling component, the vast majority of moisture reaching NEB area is originated in the south Atlantic basin and that the nearby wet Amazon basin bears almost no impact. Moreover, although the maximum precipitation in the “Poligono das Secas” region (PS) occurs in March and the maximum precipitation associated with air parcels emanating from the South Atlantic towards PS is observed along January to March, the highest moisture contribution from this oceanic region occurs slightly later (April). A dynamical analysis suggests that the maximum precipitation observed in the PS sector does not coincide with the maximum moisture supply probably due to the combined effect of the Walker and Hadley cells in inhibiting the rising motions over the region in the months following April
    corecore