69 research outputs found

    Spatial variability in carbon dioxide exchange processes within wet sedge meadows in the Canadian High Arctic

    Get PDF
    Wet sedge meadows are the most productive plant communities in the High Arctic. However, the controls on carbon dioxide (CO2) exchange processes within wet sedge communities – and the scale at which they operate – are poorly understood. Here, the factors controlling CO2 exchange of wet sedge meadows experiencing different moisture regimes are examined. Environmental data are used to create predictive models of CO2 exchange on multiple temporal scales. Automated chamber systems recorded CO2 fluxes at 30-minute intervals at wet sedge sites in the Canadian High Arctic from June to August in 2014 and 2015. Static chambers were also deployed over a larger spatial extent in 2014. Our results show that wet sedge communities were strong CO2 sinks during the growing season (−7.67 to −44.36 g C·m−2). CO2 exchange rates in wetter and drier areas within wet sedge meadows differed significantly (Wilcoxon, p<0.001), suggesting that soil moisture regimes within vegetation types influence net CO2 balance. Random Forest models explained a significant amount of the variability in CO2 flux rates over time (R2=0.46 to 0.90). The models showed that the drivers of CO2 exchange in these communities vary temporally. Variable moisture regimes indirectly influenced CO2 fluxes given that they exhibit different vegetation and temperature-response characteristics. We suggest that the response of a single vegetation type to environmental changes may vary depending on microenvironment variability within that community

    6-OHDA-induced dopaminergic neurodegeneration in <i>Caenorhabditis elegans</i> is promoted by the engulfment pathway and inhibited by the transthyretin-related protein TTR-33

    Get PDF
    <div><p>Oxidative stress is linked to many pathological conditions including the loss of dopaminergic neurons in Parkinson’s disease. The vast majority of disease cases appear to be caused by a combination of genetic mutations and environmental factors. We screened for genes protecting <i>Caenorhabditis elegans</i> dopaminergic neurons from oxidative stress induced by the neurotoxin 6-hydroxydopamine (6-OHDA) and identified the <u>t</u>rans<u>t</u>hyretin-<u>r</u>elated gene <i>ttr-33</i>. The only described <i>C</i>. <i>elegans</i> transthyretin-related protein to date, TTR-52, has been shown to mediate corpse engulfment as well as axon repair. We demonstrate that TTR-52 and TTR-33 have distinct roles. TTR-33 is likely produced in the posterior arcade cells in the head of <i>C</i>. <i>elegans</i> larvae and is predicted to be a secreted protein. TTR-33 protects <i>C</i>. <i>elegans</i> from oxidative stress induced by paraquat or H<sub>2</sub>O<sub>2</sub> at an organismal level. The increased oxidative stress sensitivity of <i>ttr-33</i> mutants is alleviated by mutations affecting the KGB-1 MAPK kinase pathway, whereas it is enhanced by mutation of the JNK-1 MAPK kinase. Finally, we provide genetic evidence that the <i>C</i>. <i>elegans</i> cell corpse engulfment pathway is required for the degeneration of dopaminergic neurons after exposure to 6-OHDA. In summary, we describe a new neuroprotective mechanism and demonstrate that TTR-33 normally functions to protect dopaminergic neurons from oxidative stress-induced degeneration, potentially by acting as a secreted sensor or scavenger of oxidative stress.</p></div

    The cross-sectional GRAS sample: A comprehensive phenotypical data collection of schizophrenic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schizophrenia is the collective term for an exclusively clinically diagnosed, heterogeneous group of mental disorders with still obscure biological roots. Based on the assumption that valuable information about relevant genetic and environmental disease mechanisms can be obtained by association studies on patient cohorts of ≥ 1000 patients, if performed on detailed clinical datasets and quantifiable biological readouts, we generated a new schizophrenia data base, the GRAS (Göttingen Research Association for Schizophrenia) data collection. GRAS is the necessary ground to study genetic causes of the schizophrenic phenotype in a 'phenotype-based genetic association study' (PGAS). This approach is different from and complementary to the genome-wide association studies (GWAS) on schizophrenia.</p> <p>Methods</p> <p>For this purpose, 1085 patients were recruited between 2005 and 2010 by an invariable team of traveling investigators in a cross-sectional field study that comprised 23 German psychiatric hospitals. Additionally, chart records and discharge letters of all patients were collected.</p> <p>Results</p> <p>The corresponding dataset extracted and presented in form of an overview here, comprises biographic information, disease history, medication including side effects, and results of comprehensive cross-sectional psychopathological, neuropsychological, and neurological examinations. With >3000 data points per schizophrenic subject, this data base of living patients, who are also accessible for follow-up studies, provides a wide-ranging and standardized phenotype characterization of as yet unprecedented detail.</p> <p>Conclusions</p> <p>The GRAS data base will serve as prerequisite for PGAS, a novel approach to better understanding 'the schizophrenias' through exploring the contribution of genetic variation to the schizophrenic phenotypes.</p

    Perioperative corticosteroids in neurosurgery - risk factor for preoperative complications

    No full text

    Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts

    No full text
    Bacterial communities colonize epithelial surfaces of most animals. Several factors, including the innate immune system, mucus composition, and diet, have been identified as determinants of host-associated bacterial communities. Here we show that the early branching metazoan Hydra is able to modify bacterial quorum-sensing signals. We identified a eukaryotic mechanism that enables Hydra to specifically modify long-chain 3-oxo-homoserine lactones into their 3-hydroxy-HSL counterparts. Expression data revealed that Hydra’s main bacterial colonizer, Curvibacter sp., responds differentially to N-(3-hydroxy-dodecanoyl)-L-homoserine lactone (3OHC12-HSL) and N-(3-oxodode-canoyl)-L-homoserine lactone (3OC12-HSL). Investigating the impacts of the different N-acyl-HSLs on host colonization elucidated that 3OHC12-HSL allows and 3OC12-HSL represses host colonization of Curvibacter sp. These results show that an animal manipulates bacterial quorum-sensing signals and that this modification leads to a phenotypic switch in the bacterial colonizers. This mechanism may enable the host to manipulate the gene expression and thereby the behavior of its bacterial colonizers. © 2017, National Academy of Sciences. All rights reserved

    Transferability of ALS-Derived Forest Resource Inventory Attributes Between an Eastern and Western Canadian Boreal Forest Mixedwood Site

    No full text
    The ability to expand the use of predictive Airborne Laser Scanning (ALS)-derived Forest Resource Inventory (FRI) models to broader regional scales is crucial for supporting large scale sustainable forest management. This research examined the transferability of ALS-based FRI attributes between two forest estates located in the eastern and western boreal forest regions of Canada. The sites were structurally diverse due to a strong east-to-west gradient in climate conditions and disturbance regimes. We first examined the ALS–FRI attribute relationships between the sites. Second, we applied Ordinary Least Squares regressions and Random Forest, to predict four FRI attributes. Third, we tested if the inclusion of calibration data from the target location improved the performance of the transferred models. As the sites were located on opposing sides of a bioclimatic gradient, inclusion of target calibration data improved transferred model performance. However, attribute prediction accuracy varied with modeling approach, attribute, and site. The best transferability models fell within a ± 5% relative RMSE of the local predictive models but increased up to 10% in relative bias. These results have implications for forest researchers and managers on both the number, and location, of FRI plots when considering undertaking forest inventories over large disparate areas
    corecore