156 research outputs found

    Work overload and diagnostic errors in radiology

    Get PDF
    PURPOSE: To determine the association between workload and diagnostic errors on clinical CT scans.METHOD: This retrospective study was performed at a tertiary care center and covered the period from January 2020 to March 2023. All clinical CT scans that contained an addendum describing a perceptual error (i.e. failure to detect an important abnormality) in the original report that was issued on office days between 7.30 a.m. and 18.00 p.m., were included. The workload of the involved radiologist on the day of the diagnostic error was calculated in terms of relative value units, and normalized for the known average daily production of each individual radiologist (workload normalized). A workload normalized of less than 100% indicates relative work underload, while a workload normalized of &gt; 100% indicates relative work overload in terms of reported examinations on an individual radiologist's basis. RESULTS: A total of 49 diagnostic errors were included. Top-five locations of diagnostic errors were lung (n = 8), bone (n = 8), lymph nodes (n = 5), peritoneum (n = 5), and liver (n = 4). Workload normalized on the days the diagnostic errors were made was on average 121% (95% confidence interval: 106% to 136%), which was significantly higher than 100% (P = 0.008). There was no significant upward monotonic trend in diagnostic errors over the course of the day (Mann-Kendall tau of 0.005, P = 1.000), and there were no other notable temporal trends either. CONCLUSIONS: Radiologists appear to have a relative work overload when they make a diagnostic error on CT. Diagnostic errors occurred throughout the entire day, without any increase towards the end of the day.</p

    Rangelands Vegetation Mapping at Species Composition Level Using the \u3cb\u3eSPiCla\u3c/b\u3e Method: \u3cb\u3eS\u3c/b\u3eDM Based \u3cb\u3ePi\u3c/b\u3exel \u3cb\u3eCla\u3c/b\u3essification and Fuzzy Accuracy. A New Approach of Map Making

    Get PDF
    Vegetation maps have been made since centuries. The vegetation cover was represented as homogeneous mapping units (polygons), representing different vegetation types, where each type consists a combination of different plant species (floristic composition). More recent, with the use of satellite imagery, the polygons have been replaced by pixels with similar content as the polygon maps. In both approaches, field-observations were linked to the mapping units (polygons or pixels) often resulting in a complex of different vegetation types per mapping unit. In our new approach field data (sample points) on presence and abundance of individual grass species are spatially extrapolated based on a set of environmental layers, using the species distribution modelling approach (SDM). When combined, each pixel will contain its own set of information about the vegetation structure and its floristic composition. This new methodology (SPiCla) results in a very accurate and detailed vegetation map at pixel level, allowing extraction of very detailed, accurate and easy to update spatial information on e.g., forage production and quality (palatability) for rangelands management. As no exact boundaries exist, but only gradients, we introduced fuzzy accuracy. The resolution mainly depends on the resolution of (or one of) the environmental layers used, scale of interest and workability. The methodology is generic and applicable to any other region in the world

    Muscle co-activity tuning in Parkinsonian hand movement : disease-specific changes at behavioral and cerebral level

    Get PDF
    We investigated different degrees of muscle co-activity in simple hand movement at behavioral and cerebral level in healthy subjects and Parkinson’s disease (PD) patients. We compared 'singular' movements, dominated by the activity of one agonist muscle, to 'composite' movements, requiring conjoint activity of multiple muscles, in a center-out (right hand) step-tracking task. Behavioral parameters were obtained by EMG and kinematic recordings. fMRI was used to investigate differences in underlying brain activations between PD patients (N= 12) and healthy (age-matched) subjects (N= 18). In healthy subjects, composite movements recruited the striatum and cortical areas comprising bilaterally the supplementary motor area and premotor cortex, contralateral medial prefrontal cortex, primary motor cortex, primary visual cortex, and ipsilateral superior parietal cortex. Contrarily, the ipsilateral cerebellum was more involved in singular movements. This striking dichotomy between striatal and cortical recruitment versus cerebellar involvement may reflect the complementary roles of these areas in motor control, in which the basal ganglia are involved in movement selection and the cerebellum in movement optimization. Compared to healthy subjects, PD patients showed decreased activation of the striatum and cortical areas in composite movement, while performing worse at behavioral level. This implies that PD patients are especially impaired on tasks requiring highly tuned muscle co-activity. Singular movement, on the other hand, was characterized by a combination of increased activation of the ipsilateral parietal cortex and left cerebellum. As singular movement performance was only slightly compromised, we interpret this as a reflection of increased visuospatial processing, possibly as a compensational mechanism

    MARIS: Scalable Online Scenario Development Tool for Rangeland Conservancy Managers Using High Spatial-Temporal Resolution Carrying Capacity Maps and Livestock Market Data

    Get PDF
    Although the management of livestock numbers within the bounds of carrying capacity of African rangelands is a way to manage risks, both scientists and practitioners, caution against a momentary and local use of carrying capacity as a management indicator. Carrying capacity should be seen in wider spatial and temporal/seasonal context as well as in a social and economic context. Given the large numbers of conservancies across Kenya, and its Maasai Mara region in particular, with many more landowner members, it is difficult for conservancies’ managers to contextualize phenomena such as carrying capacity and market price over space and time. We report the results of an investigation in the Maasai Mara rangelands, into functional characteristics a tool for spatial-temporal carrying capacity assessment and livestock markets prices monitoring should have to provide relevant management information to conservancy managers and conservancy members. A scalable web-application called the Mara Rangeland Information System, or MARIS, was developed, which assesses, at 23 meter resolution and 10 day historic or 1-day near-future intervals, both grassland dry matter production, and consumption by 19 wildlife and livestock species, as well as rangeland carrying capacity. MARIS facilitates managers to develop scenarios by varying input variables of either grass production or consumption, or by drawing different management blocks on a carrying capacity map assessing different management practices under scenarios of rainfall. Managers can relate the carrying capacity scenarios to offtake prices at different markets that MARIS monitors over time. After testing MARIS in 6 workshop iterations across the whole development process, Maasai Mara rangeland managers concluded that the prototype is ready for pilot use in management plan development

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    MicroRNA Profiling in Oesophageal Adenocarcinoma Cell Lines and Patient Serum Samples Reveals a Role for miR-451a in Radiation Resistance

    Get PDF
    Many patients with Oesophageal Adenocarcinoma (OAC) do not benefit from chemoradiotherapy treatment due to therapy resistance. To better understand the mechanisms involved in resistance and to find potential biomarkers, we investigated the association of microRNAs, which regulate gene expression, with the response to individual treatments, focusing on radiation. Intrinsic radiation resistance and chemotherapy drug resistance were assessed in eight OAC cell lines, and miRNA expression profiling was performed via TaqMan OpenArray qPCR. miRNAs discovered were either uniquely associated with resistance to radiation, cisplatin, or 5-FU, or were common to two or all three of the treatments. Target mRNA pathway analyses indicated several potential mechanisms of treatment resistance. miRNAs associated with the in vitro treatment responses were then investigated for association with pathologic response to neoadjuvant chemoradiotherapy (nCRT) in pre-treatment serums of patients with OAC. miR-451a was associated uniquely with resistance to radiation treatment in the cell lines, and with the response to nCRT in patient serums. Inhibition of miR-451a in the radiation resistant OAC cell line OE19 increased radiosensitivity (Survival Fraction 73% vs. 87%, p = 0.0003), and altered RNA expression. Pathway analysis of effected small non-coding RNAs and corresponding mRNA targets suggest potential mechanisms of radiation resistance in OAC

    The effect of pyramiding Phytophthora infestans resistance genes RPi-mcd1 and RPi-ber in potato

    Get PDF
    Despite efforts to control late blight in potatoes by introducing Rpi-genes from wild species into cultivated potato, there are still concerns regarding the durability and level of resistance. Pyramiding Rpi-genes can be a solution to increase both durability and level of resistance. In this study, two resistance genes, RPi-mcd1 and RPi-ber, introgressed from the wild tuber-bearing potato species Solanum microdontum and S. berthaultii were combined in a diploid S. tuberosum population. Individual genotypes from this population were classified after four groups, carrying no Rpi-gene, with only RPi-mcd1, with only RPi-ber, and a group with the pyramided RPi-mcd1 and RPi-ber by means of tightly linked molecular markers. The levels of resistance between the groups were compared in a field experiment in 2007. The group with RPi-mcd1 showed a significant delay to reach 50% infection of the leaf area of 3 days. The group with RPi-ber showed a delay of 3 weeks. The resistance level in the pyramid group suggested an additive effect of RPi-mcd1 with RPi-ber. This suggests that potato breeding can benefit from combining individual Rpi-genes, irrespective of the weak effect of RPi-mcd1 or the strong effect of RPi-ber

    Direction of Movement Is Encoded in the Human Primary Motor Cortex

    Get PDF
    The present study investigated how direction of hand movement, which is a well-described parameter in cerebral organization of motor control, is incorporated in the somatotopic representation of the manual effector system in the human primary motor cortex (M1). Using functional magnetic resonance imaging (fMRI) and a manual step-tracking task we found that activation patterns related to movement in different directions were spatially disjoint within the representation area of the hand on M1. Foci of activation related to specific movement directions were segregated within the M1 hand area; activation related to direction 0° (right) was located most laterally/superficially, whereas directions 180° (left) and 270° (down) elicited activation more medially within the hand area. Activation related to direction 90° was located between the other directions. Moreover, by investigating differences between activations related to movement along the horizontal (0°+180°) and vertical (90°+270°) axis, we found that activation related to the horizontal axis was located more anterolaterally/dorsally in M1 than for the vertical axis, supporting that activations related to individual movement directions are direction- and not muscle related. Our results of spatially segregated direction-related activations in M1 are in accordance with findings of recent fMRI studies on neural encoding of direction in human M1. Our results thus provide further evidence for a direct link between direction as an organizational principle in sensorimotor transformation and movement execution coded by effector representations in M1
    corecore