6,350 research outputs found

    Semiquantitative theory of electronic Raman scattering from medium-size quantum dots

    Full text link
    A consistent semiquantitative theoretical analysis of electronic Raman scattering from many-electron quantum dots under resonance excitation conditions has been performed. The theory is based on random-phase-approximation-like wave functions, with the Coulomb interactions treated exactly, and hole valence-band mixing accounted for within the Kohn-Luttinger Hamiltonian framework. The widths of intermediate and final states in the scattering process, although treated phenomenologically, play a significant role in the calculations, particularly for well above band gap excitation. The calculated polarized and unpolarized Raman spectra reveal a great complexity of features and details when the incident light energy is swept from below, through, and above the quantum dot band gap. Incoming and outgoing resonances dramatically modify the Raman intensities of the single particle, charge density, and spin density excitations. The theoretical results are presented in detail and discussed with regard to experimental observations.Comment: Submitted to Phys. Rev.

    Open DRM and the future of media

    Get PDF
    This article offers an analysis of the various methods for implementing interoperable digital rights management platforms.info:eu-repo/semantics/acceptedVersio

    Interoperability mechanisms for registration and authentication on different open DRM platforms

    Get PDF
    The DRM interoperability problem is a very complex problem. Even big software companies have already admitted that DRM as it is today is too complex ? complex for end-users, complex for content providers and complex for content handling devices manufactures. There are different approaches to deal with this problem and there are different levels to address the problem. This article addresses the DRM interoperability issues from a security point of view, and as an example the authors take two open-specification DRM architectures ? MIPAMS and OpenSDRM ? to identify a strategy to interoperate some of the basic security mechanisms. In this article the authors will concentrate in the DRM components and user’s registration, authentication and verification process and will derive a mechanism to handle and support both

    Axial skeleton anterior-posterior patterning is regulated through feedback regulation between Meis transcription factors and retinoic acid.

    Get PDF
    Vertebrate axial skeletal patterning is controlled by co-linear expression of Hox genes and axial level-dependent activity of HOX protein combinations. MEIS transcription factors act as co-factors of HOX proteins and profusely bind to Hox complex DNA; however, their roles in mammalian axial patterning remain unknown. Retinoic acid (RA) is known to regulate axial skeletal element identity through the transcriptional activity of its receptors; however, whether this role is related to MEIS/HOX activity remains unknown. Here, we study the role of Meis in axial skeleton formation and its relationship to the RA pathway in mice. Meis elimination in the paraxial mesoderm produces anterior homeotic transformations and rib mis-patterning associated to alterations of the hypaxial myotome. Although Raldh2 and Meis positively regulate each other, Raldh2 elimination largely recapitulates the defects associated with Meis deficiency, and Meis overexpression rescues the axial skeletal defects in Raldh2 mutants. We propose a Meis-RA-positive feedback loop, the output of which is Meis levels, that is essential to establish anterior-posterior identities and patterning of the vertebrate axial skeleton.This research was supported by the Ministerio de Ciencia, Innovación y Universidades (PGC2018-096486-B-I00), the Instituto de Salud Carlos III (RD16/ 0011/0019) and by the Comunidad de Madrid (S2017/BMD3875). The Centro Nacional de Investigaciones Cardiovasculares Carlos III is supported by the Ministerio de Ciencia, Innovación y Universidades and the Pro Centro Nacional de Investigaciones Cardiovasculares Carlos III Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). A.C.L.-D. was the recipient of a Formación Personal Investigador fellowship from the Ministerio de Economı́a y Competitividad (BES-2013-064374).S

    VLT and GTC observations of SDSS J0123+00: a type 2 quasar triggered in a galaxy encounter?

    Get PDF
    We present long-slit spectroscopy, continuum and [OIII]5007 imaging data obtained with the Very Large Telescope and the Gran Telescopio Canarias of the type 2 quasar SDSS J0123+00 at z=0.399. The quasar lies in a complex, gas-rich environment. It appears to be physically connected by a tidal bridge to another galaxy at a projected distance of ~100 kpc, which suggests this is an interacting system. Ionized gas is detected to a distance of at least ~133 kpc from the nucleus. The nebula has a total extension of ~180 kpc. This is one of the largest ionized nebulae ever detected associated with an active galaxy. Based on the environmental properties, we propose that the origin of the nebula is tidal debris from a galactic encounter, which could as well be the triggering mechanism of the nuclear activity. SDSS J0123+00 demonstrates that giant, luminous ionized nebulae can exist associated with type 2 quasars of low radio luminosities, contrary to expectations based on type 1 quasar studies.Comment: 6 pages, 5 figures. Accepted for publication in MNRAS Letter

    Decoherence in a double-slit quantum eraser

    Full text link
    We study and experimentally implement a double-slit quantum eraser in the presence of a controlled decoherence mechanism. A two-photon state, produced in a spontaneous parametric down conversion process, is prepared in a maximally entangled polarization state. A birefringent double-slit is illuminated by one of the down-converted photons, and it acts as a single-photon two-qubits controlled not gate that couples the polarization with the transversal momentum of these photons. The other photon, that acts as a which-path marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the transition from wave-like to particle-like behavior of the signal photons crossing the double-slit as a function of the decoherence parameter, which depends on the length path difference at the interferometer.Comment: Accepted in Physical Review

    Control of quantum interference in the quantum eraser

    Full text link
    We have implemented an optical quantum eraser with the aim of studying this phenomenon in the context of state discrimination. An interfering single photon is entangled with another one serving as a which-path marker. As a consequence, the visibility of the interference as well as the which-path information are constrained by the overlap (measured by the inner product) between the which-path marker states, which in a more general situation are non-orthogonal. In order to perform which-path or quantum eraser measurements while analyzing non-orthogonal states, we resort to a probabilistic method for the unambiguous modification of the inner product between the two states of the which-path marker in a discrimination-like process.Comment: Submitted to New Journal of Physics, March 200

    Transmission of Foot-and-Mouth Disease Virus during the Incubation Period in Pigs.

    Full text link
    Understanding the quantitative characteristics of a pathogen's capability to transmit during distinct phases of infection is important to enable accurate predictions of the spread and impact of a disease outbreak. In the current investigation, the potential for transmission of foot-and-mouth disease virus (FMDV) during the incubation (preclinical) period of infection was investigated in seven groups of pigs that were sequentially exposed to a group of donor pigs that were infected by simulated-natural inoculation. Contact-exposed pigs were comingled with infected donors through successive 8-h time slots spanning from 8 to 64 h post-inoculation (hpi) of the donor pigs. The transition from latent to infectious periods in the donor pigs was clearly defined by successful transmission of foot-and-mouth disease (FMD) to all contact pigs that were exposed to the donors from 24 hpi and later. This onset of infectiousness occurred concurrent with detection of viremia, but approximately 24 h prior to the first appearance of clinical signs of FMD in the donors. Thus, the latent period of infection ended approximately 24 h before the end of the incubation period. There were significant differences between contact-exposed groups in the time elapsed from virus exposure to the first detection of FMDV shedding, viremia, and clinical lesions. Specifically, the onset and progression of clinical FMD were more rapid in pigs that had been exposed to the donor pigs during more advanced phases of disease, suggesting that these animals had received a higher effective challenge dose. These results demonstrate transmission and dissemination of FMD within groups of pigs during the incubation period of infection. Furthermore, these findings suggest that under current conditions, shedding of FMDV in oropharyngeal fluids is a more precise proxy for FMDV infectiousness than clinical signs of infection. These findings may impact modeling of the propagation of FMD outbreaks that initiate in pig holdings and should be considered when designing FMD control strategies
    corecore