158 research outputs found

    A foam model highlights the differences of the macro- and microrheology of respiratory horse mucus

    Get PDF
    Native horse mucus is characterized with micro- and macrorheology and compared to hydroxyethylcellulose (HEC) gel as a model. Both systems show comparable viscoelastic properties on the microscale and for the HEC the macrorheology is in good agreement with the microrheology. For the mucus, the viscoelastic moduli on the macroscale are several orders of magnitude larger than on the microscale. Large amplitude oscillatory shear experiments show that the mucus responds nonlinearly at much smaller deformations than HEC. This behavior fosters the assumption that the mucus has a foam like structure on the microscale compared to the typical mesh like structure of the HEC, a model that is supported by cryogenic-scanning-electron-microscopy (CSEM) images. These images allow also to determine the relative amount of volume that is occupied by the pores and the scaffold. Consequently, we can estimate the elastic modulus of the scaffold. We conclude that this particular foam like microstructure should be considered as a key factor for the transport of particulate matter which plays a central role in mucus function with respect to particle penetration. The mesh properties composed of very different components are responsible for macroscopic and microscopic behavior being part of particles fate after landing.Comment: Accepted for publication in the Journal of the Mechanical Behavior of Biomedical Material

    The Extremely Luminous Quasar Survey in the Pan-STARRS 1 Footprint (PS-ELQS)

    Get PDF
    We present the results of the Extremely Luminous Quasar Survey in the 3π3\pi survey of the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS; PS1). This effort applies the successful quasar selection strategy of the Extremely Luminous Survey in the Sloan Digital Sky Survey footprint (∌12,000 deg2\sim12,000\,\rm{deg}^2) to a much larger area (∌21486 deg2\sim\rm{21486}\,\rm{deg}^2). This spectroscopic survey targets the most luminous quasars (M1450≀−26.5M_{1450}\le-26.5; mi≀18.5m_{i}\le18.5) at intermediate redshifts (z≄2.8z\ge2.8). Candidates are selected based on a near-infrared JKW2 color cut using WISE AllWISE and 2MASS photometry to mainly reject stellar contaminants. Photometric redshifts (zregz_{\rm{reg}}) and star-quasar classifications for each candidate are calculated from near-infrared and optical photometry using the supervised machine learning technique random forests. We select 806 quasar candidates at zreg≄2.8z_{\rm{reg}}\ge2.8 from a parent sample of 74318 sources. After exclusion of known sources and rejection of candidates with unreliable photometry, we have taken optical identification spectra for 290 of our 334 good PS-ELQS candidates. We report the discovery of 190 new z≄2.8z\ge2.8 quasars and an additional 28 quasars at lower redshifts. A total of 44 good PS-ELQS candidates remain unobserved. Including all known quasars at z≄2.8z\ge2.8, our quasar selection method has a selection efficiency of at least 77%77\%. At lower declinations −30≀Decl.≀0-30\le\rm{Decl.}\le0 we approximately triple the known population of extremely luminous quasars. We provide the PS-ELQS quasar catalog with a total of 592 luminous quasars (mi≀18.5m_{i}\le18.5, z≄2.8z\ge2.8). This unique sample will not only be able to provide constraints on the volume density and quasar clustering of extremely luminous quasars, but also offers valuable targets for studies of the intergalactic medium.Comment: 34 pages, 10 figures, accepted to ApJ

    Accuracy analysis of vertical deflection data observed with the Hannover Digital Zenith Camera System TZK2-D

    Get PDF
    This paper analyses the accuracy of vertical deflection measurements carried out with the Digital Zenith Camera System TZK2-D, an astrogeodetic state-of-the-art instrumentation developed at the University of Hannover. During 107 nights over a period of 3.5 years, the system was used for repeated vertical deflection observations at a selected station in Hannover. The acquired data set consists of about 27,300 single measurements and covers 276 h of observation time, respectively. For the data collected at an earlier stage of development (2003 to 2004), the accuracy of the nightly mean values has been found to be about 0".10-0".12. Due to applying a refined observation strategy since 2005, the accuracy of the vertical deflection measurements was enhanced into the unprecedented range of 0".05-0".08. Accessing the accuracy level of 0".05 requires usually 1 h of observational data, while the 0".08 accuracy level is attained after 20 min measurement time. In comparison to the analogue era of geodetic astronomy, the accuracy of vertical deflection observations is significantly improved by about one order of magnitude

    Mutual Validation of GNSS Height Measurements and High-precision Geometric-astronomical Leveling

    Get PDF
    The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies

    Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data

    Get PDF
    A global geopotential model, like EGM2008, is not capable of representing the high-frequency components of Earth?s gravity field. This is known as the omission error. In mountainous terrain, omission errors in EGM2008, even when expanded to degree 2,190, may reach amplitudes of10cm and more for height anomalies. The present paper proposes the utilisation of high-resolution residual terrain model (RTM) data for computing estimates of the omission error in rugged terrain. RTM elevations may be constructed as the difference between the SRTM (Shuttle Radar Topography Mission) elevation model and the DTM2006.0 spherical harmonic topographic expansion. Numerical tests, carried out in the German Alps with a precise gravimetric quasigeoid model (GCG05) and GPS/levelling data as references, demonstrate that RTM-based omission error estimatesimprove EGM2008 height anomaly differences by 10cm in many cases. The comparisons of EGM2008-only height anomalies and the GCG05 model showed 3.7 cm standard deviation after a bias-fit. Applying RTM omission error estimates to EGM2008 reduces the standard deviation to 1.9 cm which equates to a significant improvement rate of 47%. Using GPS/levelling data strongly corroborates thesefindings with an improvement rate of 49%. The proposed RTM approach may be of practical value to improve quasigeoid determination in mountainous areas without sufficient regional gravity data coverage, e.g., in parts of Asia, South America or Africa. As a further application, RTMomission error estimates will allow refined validation of global gravity field models like EGM2008 from GPS/levelling data

    Expected accuracy of tilt measurements on a novel hexapod-based Digital zenith camera system: A Monte-Carlo simulation study

    Get PDF
    Digital zenith camera systems (DZCS) are dedicated astronomical-geodetic measurement systems for the observation of the direction of the plumb line. A DZCS key component is a pair of tilt meters for the determination of the instrumental tilt with respect to the plumb line. Highest accuracy (i.e., 0.1 arc-seconds or better) is achieved in practice through observation with precision tilt meters in opposite faces (180° instrumental rotation), and application of rigorous tilt reduction models. A novel concept proposes the development of a hexapod (Stewart platform)-based DZCS. However, hexapod-based total rotations are limited to about 30°–60° in azimuth (equivalent to ±15° to ±30° yaw rotation), which raises the question of the impact of the rotation angle between the two faces on the accuracy of the tilt measurement. The goal of the present study is the investigation of the expected accuracy of tilt measurements to be carried out on future hexapod-based DZCS, with special focus placed on the role of the limited rotation angle. A Monte-Carlo simulation study is carried out in order to derive accuracy estimates for the tilt determination as a function of several input parameters, and the results are validated against analytical error propagation.As the main result of the study, limitation of the instrumental rotation to 60° (30°) deteriorates the tilt accuracy by a factor of about 2 (4) compared to a 180° rotation between the faces. Nonetheless, a tilt accuracy at the 0.1 arc-second level is expected when the rotation is at least 45°, and 0.05 arc-second (about 0.25 microradian) accurate tilt meters are deployed. As such, a hexapod-based DZCS can be expected to allow sufficiently accurate determination of the instrumental tilt. This provides supporting evidence for the feasibility of such a novel instrumentation. The outcomes of our study are not only relevant to the field of DZCS, but also to all other types of instruments where the instrumental tilt must be corrected. Examples include electronic theodolites or total stations, gravity meters, and other hexapod-based telescopes

    Reduced Deep Convection and Bottom Water Formation Due To Antarctic Meltwater in a Multi-Model Ensemble

    Get PDF
    The additional water from the Antarctic ice sheet and ice shelves due to climate-induced melt can impact ocean circulation and global climate. However, the major processes driving melt are not adequately represented in Coupled Model Intercomparison Project phase 6 (CMIP6) models. Here, we analyze a novel multi-model ensemble of CMIP6 models with consistent meltwater addition to examine the robustness of the modeled response to meltwater, which has not been possible in previous single-model studies. Antarctic meltwater addition induces a substantial weakening of open-ocean deep convection. Additionally, Antarctic Bottom Water warms, its volume contracts, and the sea surface cools. However, the magnitude of the reduction varies greatly across models, with differing anomalies correlated with their respective mean-state climatology, indicating the state-dependency of the climate response to meltwater. A better representation of the Southern Ocean mean state is necessary for narrowing the inter-model spread of response to Antarctic meltwater.publishedVersio

    Deep structure of the Ionian Sea and Sicily Dionysus - Cruise No. M111, October 10 - November 1, 2014, Catania (Italy) – Catania (Italy)

    Get PDF
    Summary The origin of the Ionian Sea lithosphere and the deep structure of its margins remain a little investigated part of the Mediterranean Sea. To shed light on the plate tectonic setting in this central part of southern Europe, R/V METEOR cruise M111 set out to acquire deep penetrating seismic data in the Ionian Sea. M111 formed the core of an amphibious investigation covering the Ionian Sea and island of Sicily. A total of 153 OBS/OBH deployments using French and German instruments were successfully carried out, in addition to 12 land stations installed on Sicily, which recorded the offshore air gun shots. The aim of this onshore-offshore study is to quantify the deep geometry and architecture of the Calabria subduction zone and Ionian Sea lithosphere and to shed light on the nature of the Ionian Sea crust (oceanic crust vs. thinned continental crust). Investigating the structure of the Ionian crust and lithospheric mantle will contribute to unravel the unknown ocean-continent transition and Tethys margin. Analyzing the tectonic activity and active deformation zones is essential for understanding the subduction processes that underlie the neotectonics of the Calabrian subduction zone and earthquake hazard of the Calabria/Sicily region, especially in the vicinity of local decoupling zones

    The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design

    Get PDF
    Abstract. As the climate warms, the grounded ice sheet and floating ice shelves surrounding Antarctica are melting and releasing additional freshwater into the Southern Ocean. Nonetheless, almost all existing coupled climate models have fixed ice sheets and lack the physics required to represent the dominant sources of Antarctic melt. These missing ice dynamics represent a key uncertainty that is typically unaccounted for in current global climate change projections. Previous modelling studies that have imposed additional Antarctic meltwater have demonstrated regional impacts on Southern Ocean stratification, circulation, and sea ice, as well as remote changes in atmospheric circulation, tropical precipitation, and global temperature. However, these previous studies have used widely varying rates of freshwater forcing, have been conducted using different climate models and configurations, and have reached differing conclusions on the magnitude of meltwater–climate feedbacks. The Southern Ocean Freshwater Input from Antarctica (SOFIA) initiative brings together a team of scientists to quantify the climate system response to Antarctic meltwater input along with key aspects of the uncertainty. In this paper, we summarize the state of knowledge on meltwater discharge from the Antarctic ice sheet and ice shelves to the Southern Ocean and explain the scientific objectives of our initiative. We propose a series of coupled and ocean–sea ice model experiments, including idealized meltwater experiments, historical experiments with observationally consistent meltwater input, and future scenarios driven by meltwater inputs derived from stand-alone ice sheet models. Through coordinating a multi-model ensemble of simulations using a common experimental design, open data archiving, and facilitating scientific collaboration, SOFIA aims to move the community toward better constraining our understanding of the climate system response to Antarctic melt. </jats:p
    • 

    corecore