1,308 research outputs found

    Temperature Dependence Of Brillouin Light Scattering Spectra Of Acoustic Phonons In Silicon

    Get PDF
    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. (C) 2015 AIP Publishing LLC.National Science Foundation (NSF) Thermal Transport Processes Program CBET-1336968PhysicsCenter for Complex Quantum SystemsMaterials Science and EngineeringTexas Materials InstituteMechanical Engineerin

    A study on decision-making of food supply chain based on big data

    Get PDF
    As more and more companies have captured and analyzed huge volumes of data to improve the performance of supply chain, this paper develops a big data harvest model that uses big data as inputs to make more informed production decisions in the food supply chain. By introducing a method of Bayesian network, this paper integrates sample data and finds a cause-and-effect between data to predict market demand. Then the deduction graph model that translates products demand into processes and divides processes into tasks and assets is presented, and an example of how big data in the food supply chain can be combined with Bayesian network and deduction graph model to guide production decision. Our conclusions indicate that the analytical framework has vast potential for supporting support decision making by extracting value from big data

    Low-voltage lateral-contact microrelays for RF applications,” IEEE,

    Get PDF
    ABSTRACT This paper reports the design and fabrication of a lowvoltage lateral-contact microrelay for RF applications. The silicon surface micromachined relay utilizes electrothermal actuators and low-stress silicon nitride as a structural connection as well as electrical and thermal isolation. The sidewall contact is sputtered gold. The driving voltage is measured to be as low as 8V. RF testing shows that the microrelay has an off-state isolation of20dB at 12GHz. The simplicity of this four-mask fabrication process enables the possible integration with other RF MEMS components

    The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition

    Get PDF
    The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT.Oncogene advance online publication, 25 July 2016; doi:10.1038/onc.2016.260

    Development of a step-down method for altering male C57BL/6 mouse housing density and hierarchical structure: Preparations for spaceflight studies

    Get PDF
    This study was initiated as a component of a larger undertaking designed to study bone healing in microgravity aboard the International Space Station (ISS). Spaceflight experimentation introduces multiple challenges not seen in ground studies, especially with regard to physical space, limited resources, and inability to easily reproduce results. Together, these can lead to diminished statistical power and increased risk of failure. It is because of the limited space, and need for improved statistical power by increasing sample size over historical numbers, NASA studies involving mice require housing mice at densities higher than recommended in the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011). All previous NASA missions in which mice were co-housed, involved female mice; however, in our spaceflight studies examining bone healing, male mice are required for optimal experimentation. Additionally, the logistics associated with spaceflight hardware and our study design necessitated variation of density and cohort make up during the experiment. This required the development of a new method to successfully co-house male mice while varying mouse density and hierarchical structure. For this experiment, male mice in an experimental housing schematic of variable density (Spaceflight Correlate) analogous to previously established NASA spaceflight studies was compared to a standard ground based housing schematic (Normal Density Controls) throughout the experimental timeline. We hypothesized that mice in the Spaceflight Correlate group would show no significant difference in activity, aggression, or stress when compared to Normal Density Controls. Activity and aggression were assessed using a novel activity scoring system (based on prior literature, validated in-house) and stress was assessed via body weights, organ weights, and veterinary assessment. No significant differences were detected between the Spaceflight Correlate group and the Normal Density Controls in activity, aggression, body weight, or organ weight, which was confirmed by veterinary assessments. Completion of this study allowed for clearance by NASA of our bone healing experiments aboard the ISS, and our experiment was successfully launched February 19, 2017 on SpaceX CRS-10

    AC-conductance of a quantum wire with electron-electron interaction

    Full text link
    The complex ac-response of a quasi-one dimensional electron system in the one-band approximation with an interaction potential of finite range is investigated. It is shown that linear response is exact for this model. The influence of the screening of the electric field is discussed. The complex absorptive conductance is analyzed in terms of resistive, capacitive and inductive behaviors.Comment: 13 pages, REVTeX, 7 eps figures, to appear in Phys. Rev.

    Efficacy, Stability, and Biosafety of Sifuvirtide Gel as a Microbicide Candidate against HIV-1

    Get PDF
    Sifuvirtide is a proven effective HIV-1 entry inhibitor and its safety profile has been established for systemic administration. The present study evaluated the potential of sifuvirtide formulated in a universal gel for topical use as a microbicide candidate for preventing sexual transmission of HIV. Our data showed that sifuvirtide formulated in HEC gel is effective against HIV-1 B, C subtypes, CRF07_BC and CRF01_AE, the latter two recombinants represents the most prevalent strains in China. In addition, we demonstrated that sifuvirtide in gel is stable for at least 8 weeks even at 40°C, and did not cause the disruption of integrity of mucosal epithelial surface, or the up-regulation of inflammatory cytokines both in vitro or in vivo. These results suggest that sifuvirtide gel is an effective, safe and stable product, and should be further tested as a vaginal or rectal microbicide in pre-clinical model or clinical trial for preventing HIV sexual transmission

    Effects of anisotropic interactions on the structure of animal groups

    Full text link
    This paper proposes an agent-based model which reproduces different structures of animal groups. The shape and structure of the group is the effect of simple interaction rules among individuals: each animal deploys itself depending on the position of a limited number of close group mates. The proposed model is shown to produce clustered formations, as well as lines and V-like formations. The key factors which trigger the onset of different patterns are argued to be the relative strength of attraction and repulsion forces and, most important, the anisotropy in their application.Comment: 22 pages, 9 figures. Submitted. v1-v4: revised presentation; extended simulations; included technical results. v5: added a few clarification

    Electronic and Magnetic Properties of Partially-Open Carbon Nanotubes

    Full text link
    On the basis of the spin-polarized density functional theory calculations, we demonstrate that partially-open carbon nanotubes (CNTs) observed in recent experiments have rich electronic and magnetic properties which depend on the degree of the opening. A partially-open armchair CNT is converted from a metal to a semiconductor, and then to a spin-polarized semiconductor by increasing the length of the opening on the wall. Spin-polarized states become increasingly more stable than nonmagnetic states as the length of the opening is further increased. In addition, external electric fields or chemical modifications are usable to control the electronic and magnetic properties of the system. We show that half-metallicity may be achieved and the spin current may be controlled by external electric fields or by asymmetric functionalization of the edges of the opening. Our findings suggest that partially-open CNTs may offer unique opportunities for the future development of nanoscale electronics and spintronics.Comment: 6 figures, to appear in J. Am. Chem. So

    Association of epilepsy, anti-epileptic drugs (AEDs), and type 2 diabetes mellitus (T2DM): a population-based cohort retrospective study, impact of AEDs on T2DM-related molecular pathway, and via peroxisome proliferator-activated receptor Îł transactivation

    Get PDF
    IntroductionA potential association between epilepsy and subsequent type 2 diabetes mellitus (T2DM) has emerged in recent studies. However, the association between epilepsy, anti-epileptic drugs (AEDs), and the risk of T2DM development remains controversial. We aimed to conduct a nationwide, population-based, retrospective, cohort study to evaluate this relationship.MethodsWe extracted data from the Taiwan Longitudinal Generation Tracking Database of patients with new-onset epilepsy and compared it with that of a comparison cohort of patients without epilepsy. A Cox proportional hazards regression model was used to analyze the difference in the risk of developing T2DM between the two cohorts. Next-generation RNA sequencing was used to characterize T2DM-related molecularchanges induced by AEDs and the T2DM-associated pathways they alter. The potential of AEDs to induce peroxisome proliferator-activated receptor γ (PPARγ) transactivation was also evaluated.ResultsAfter adjusting for comorbidities and confounding factors, the case group (N = 14,089) had a higher risk for T2DM than the control group (N = 14,089) [adjusted hazards ratio (aHR), 1.27]. Patients with epilepsy not treated with AEDs exhibited a significantly higher risk of T2DM (aHR, 1.70) than non-epileptic controls. In those treated with AEDs, the risk of developing T2DM was significantly lower than in those not treated (all aHR ≤ 0.60). However, an increase in the defined daily dose of phenytoin (PHE), but not of valproate (VPA), increased the risk of T2DM development (aHR, 2.28). Functional enrichment analysis of differentially expressed genes showed that compared to PHE, VPA induced multiple beneficial genes associated with glucose homeostasis. Among AEDs, VPA induced the specific transactivation of PPARγ.DiscussionOur study shows epilepsy increases the risk of T2DM development, however, some AEDs such as VPA might yield a protective effect against it. Thus, screening blood glucose levels in patients with epilepsy is required to explore the specific role and impact of AEDs in the development of T2DM. Future in depth research on the possibility to repurpose VPA for the treatment of T2DM, will offer valuable insight regarding the relationship between epilepsy and T2DM
    • …
    corecore