224 research outputs found
Atomic motion in tilted optical lattices
This paper presents a formalism describing the dynamics of a quantum particle
in a one-dimensional, time-dependent, tilted lattice. The formalism uses the
Wannier-Stark states, which are localized in each site of the lattice, and
provides a simple framework allowing fully-analytical developments. Analytic
solutions describing the particle motion are explicit derived, and the
resulting dynamics is studied.Comment: 6 pages, 2 figs, submitted to EPJD, Springer Verlag styl
Oscillations in the expression of a self-repressed gene induced by a slow transcriptional dynamics
We revisit the dynamics of a gene repressed by its own protein in the case
where the transcription rate does not adapt instantaneously to protein
concentration but is a dynamical variable. We derive analytical criteria for
the appearance of sustained oscillations and find that they require degradation
mechanisms much less nonlinear than for infinitely fast regulation.
Deterministic predictions are also compared with stochastic simulations of this
minimal genetic oscillator
Oscillations in the expression of a self-repressed gene induced by a slow transcriptional dynamics
We revisit the dynamics of a gene repressed by its own protein in the case
where the transcription rate does not adapt instantaneously to protein
concentration but is a dynamical variable. We derive analytical criteria for
the appearance of sustained oscillations and find that they require degradation
mechanisms much less nonlinear than for infinitely fast regulation.
Deterministic predictions are also compared with stochastic simulations of this
minimal genetic oscillator
Classical chaos with Bose-Einstein condensates in tilted optical lattices
A widely accepted definition of ``quantum chaos'' is ``the behavior of a
quantum system whose \emph{classical} \emph{limit is chaotic}''. The dynamics
of quantum-chaotic systems is nevertheless very different from that of their
classical counterparts. A fundamental reason for that is the linearity of
Schr{\"o}dinger equation. In this paper, we study the quantum dynamics of an
ultra-cold quantum degenerate gas in a tilted optical lattice and show that it
displays features very close to \emph{classical} chaos. We show that its phase
space is organized according to the Kolmogorov-Arnold-Moser theorem.Comment: 4 pages, 3 figure
Wavepacket reconstruction via local dynamics in a parabolic lattice
We study the dynamics of a wavepacket in a potential formed by the sum of a
periodic lattice and of a parabolic potential. The dynamics of the wavepacket
is essentially a superposition of ``local Bloch oscillations'', whose frequency
is proportional to the local slope of the parabolic potential. We show that the
amplitude and the phase of the Fourier transform of a signal characterizing
this dynamics contains information about the amplitude and the phase of the
wavepacket at a given lattice site. Hence, {\em complete} reconstruction of the
the wavepacket in the real space can be performed from the study of the
dynamics of the system.Comment: 4 pages, 3 figures, RevTex
Head-to-head comparison of length of stay, patients' outcome and satisfaction in Switzerland before and after SwissDRG-Implementation in 2012 in 2012: an observational study in two tertiary university centers.
On 1 January 2012 Swiss Diagnosis Related Groups (DRG), a new uniform payment system for in-patients was introduced in Switzerland with the intention to replace a "cost-based" with a "case-based" reimbursement system to increase efficiency. With the introduction of the new payment system we aim to answer questions raised regarding length of stay as well as patients' outcome and satisfaction.
This is a prospective, two-centre observational cohort study with data from University Hospital Basel and the Cantonal Hospital Aarau, Switzerland, from January to June 2011 and 2012, respectively. Consecutive in-patients with the main diagnosis of either community-acquired pneumonia, exacerbation of COPD, acute heart failure or hip fracture were included. A questionnaire survey was sent out after discharge investigating changes before and after SwissDRG implementation. Our primary endpoint was LOS.
Of 1,983 eligible patients 841 returned the questionnaire and were included into the analysis (429 in 2011, 412 in 2012). The median age was 76.7 years (50.8% male). Patients in the two years were well balanced in regard to main diagnoses and co-morbidities. Mean LOS in the overall patient population was 10.0 days and comparable between the 2011 cohort and the 2012 cohort (9.7 vs 10.3; p = 0.43). Overall satisfaction with care changed only slightly after introduction of SwissDRG and remained high (89.0% vs 87.8%; p = 0.429).
Investigating the influence of the implementation of SwissDRG in 2012 regarding LOS patients' outcome and satisfaction, we found no significant changes. However, we observed some noteworthy trends, which should be monitored closely
Super Bloch oscillations in the Peyrard-Bishop-Holstein model
Recently, polarons in the Peyrard-Bishop-Holstein model under DC electric
fields were established to perform Bloch oscillations, provided the
charge-lattice coupling is not large. In this work, we study this model when
the charge is subjected to an applied field with both DC and AC components.
Similarly to what happens in the rigid lattice, we find that the carrier
undergoes a directed motion or coherent oscillations when the AC field is
resonant or detuned with respect to the Bloch frequency, respectively. The
electric density current and its Fourier spectrum are also studied to reveal
the frequencies involved in the polaron dynamics
Theoretical analysis of quantum dynamics in 1D lattices: Wannier-Stark description
This papers presents a formalism describing the dynamics of a quantum
particle in a one-dimensional tilted time-dependent lattice. The description
uses the Wannier-Stark states, which are localized in each site of the lattice
and provides a simple framework leading to fully-analytical developments.
Particular attention is devoted to the case of a time-dependent potential,
which results in a rich variety of quantum coherent dynamics is found.Comment: 8 pages, 6 figures, submitted to PR
Damped Bloch oscillations of cold atoms in optical lattices
The paper studies Bloch oscillations of cold neutral atoms in the optical
lattice. The effect of spontaneous emission on the dynamics of the system is
analyzed both analytically and numerically. The spontaneous emission is shown
to cause (i) the decay of Bloch oscillations with the decrement given by the
rate of spontaneous emission and (ii) the diffusive spreading of the atoms with
a diffusion coefficient depending on {\em both} the rate of spontaneous
emission and the Bloch frequency.Comment: 10 pages, 8 figure
Dynamics of one-dimensional tight-binding models with arbitrary time-dependent external homogeneous fields
The exact propagators of two one-dimensional systems with time-dependent
external fields are presented by following the path-integral method. It is
shown that the Bloch acceleration theorem can be generalized to the
impulse-momentum theorem in quantum version. We demonstrate that an evolved
Gaussian wave packet always keeps its shape in an arbitrary time-dependent
homogeneous driven field. Moreover, that stopping and accelerating of a wave
packet can be achieved by the pulsed field in a diabatic way.Comment: 8 pages, 6 figure
- âŠ