33 research outputs found

    Renal phenotype of Et-1 transgenic mice is modulated by androgens

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Activation of the endothelin (ET) system promotes inflammation and fibrosis in various tissues including the kidney. Male ET-1 transgenic mice are characterized by chronic kidney inflammation and renal scarring. We hypothesized that this renal phenotype might be modulated by androgens. Thus the aim of our study was to elucidate the impact of gonadectomy in ET-1 transgenic mice on kidney function and morphology.</p> <p>Methods</p> <p>Male ET-1 transgenic mice at the age of 10 weeks were randomly allocated to the following groups: normal ET transgenic mice (ET; n = 17) and ET transgenic mice that underwent castration (ET+cas; n = 12). Study duration was 9 months. Creatinine clearance and protein excretion was monitored. At study end animals were sacrificed and kidneys were harvested for histology/immunhistochemistry.</p> <p>Results</p> <p>Castration significantly ameliorated glomerulosclerosis in ET-1 transgenic mice (ET glomerulosclerosis-score: 3.0 ± 0.17 vs ET+cas: 2.4 ± 0.17; p < 0.05) as well as renal perivascular fibrosis (ET fibrosis-score: 3.0 ± 0.14 vs ET+cas: 2.2 ± 0.14; p < 0.05). However, interstitial fibrosis and media/lumenratio of renal arteries remained unaffected by castration. Regarding inflammation, castration significantly reduced the number of CD4-positive cells in renal tissue of ET-1 transgenic mice (ET CD4-positive cells/10000 cells: 355 ± 72 vs ET+cas: 147 ± 28; p < 0.05). Renal tissue contents of CD8 positive cells as well as of macrophages were not affected by castration. Regarding kidney function castration significantly reduced proteinuria in ET-1 transgenic mice whereas creatinine clearance did not differ between study groups.</p> <p>Conclusion</p> <p>Our study demonstrates that the renal histopathological phenotype in male ET-1 transgenic mice with regard to glomerulosclerosis, proteinuria, perivascular fibrosis and immune cell immigration is ameliorated by castration. We thus conclude that the effects of ET-1 overexpression on renal tissue injury are modulated by androgens.</p

    Effects of separated pair housing of female C57BL/6JRj mice on well-being

    Get PDF
    In laboratory animal facilities, it is a common code of practice to house female mice in groups. However, some experimental conditions require to house them individually, even though social isolation may impair their well-being. Therefore, we introduced a separated pair housing system and investigated whether it can refine single housing of adult female C57BL/6JRj mice. Individually ventilated cages (IVC) were divided by perforated transparent walls to separate two mice within a cage. The cage divider allowed visual, acoustic, and olfactory contact between the mice but prevented interindividual body-contact or food sharing. Short- and long-term effects of the separated pair housing system on the well-being of the mice were compared with single and group housing using a range of behavioral and physiological parameters: Nest building behavior was assessed based on the complexity of nests, the burrowing performance was measured by the amount of food pellets removed from a bottle, and trait anxiety-related behavior was tested in the free exploratory paradigm. For the evaluation of the ease of handling, interaction with the experimenter's hand was monitored. Social interaction with unknown conspecifics and locomotor activity were investigated in a test arena. Moreover, body weight and stress hormone (metabolites) were measured in feces and hair. After the mice spent a day under the respective housing conditions, concentrations of fecal corticosterone metabolites were higher in separated pair-housed mice, and they built nests of a higher complexity when compared to single-housed mice. The latter effect was still observable eight weeks later. In week 8, separated pair-housed mice showed less locomotor activity in the social interaction arena compared to mice from the other housing systems, i.e., single and group housing. Regardless of the time of testing, pair housing improved the burrowing performance. Separated pair-housed mice were more difficult to catch than group-housed mice. Hair corticosterone, progesterone, and dehydroepiandrosterone concentrations changed with increasing age independently of the housing system. There were no effects of the housing systems on trait anxiety-related behavior in the free exploratory paradigm, voluntary interaction with the experimenter's hand, and body weight. Overall, the transfer to the separated pair housing system caused short-term stress responses in female C57BL/6JRj mice. Long-term effects of separated pair housing were ambiguous. On one hand, separated pair housing increased nesting and burrowing behavior and may therefore be beneficial compared to single housing. But on the other hand, locomotor activity decreased. The study underlined that the effects of the housing conditions on physiological and behavioral parameters should be considered when analyzing and reporting animal experiments

    Dual-probe molecular MRI for the in vivo characterization of atherosclerosis in a mouse model: Simultaneous assessment of plaque inflammation and extracellularmatrix remodeling

    Get PDF
    Molecular MRI is a promising in-vivo modality to detect and quantify morphological and molecular vessel-wall changes in atherosclerosis. The combination of different molecular biomarkers may improve the risk stratification of patients. This study aimed to investigate the feasibility of simultaneous visualization and quantification of plaque-burden and inflammatory activity by dual-probe molecular MRI in a mouse-model of progressive atherosclerosis and in response-to-therapy. Homozygous apolipoprotein E knockout mice (ApoE-/-) were fed a high-fat-diet (HFD) for up to four-months prior to MRI of the brachiocephalic-artery. To assess response-to-therapy, a statin was administered for the same duration. MR imaging was performed before and after administration of an elastin-specific gadolinium-based and a macrophage-specific iron-oxide-based probe. Following in-vivo MRI, samples were analyzed using histology, immunohistochemistry, inductively-coupled-mass-spectrometry and laser-inductively-coupled-mass-spectrometry. In atherosclerotic-plaques, intraplaque expression of elastic-fibers and inflammatory activity were not directly linked. While the elastin-specific probe demonstrated the highest accumulation in advanced atherosclerotic-plaques after four-months of HFD, the iron-oxide-based probe showed highest accumulation in early atherosclerotic-plaques after two-months of HFD. In-vivo measurements for the elastin and iron-oxide-probe were in good agreement with ex-vivo histopathology (Elastica-van-Giesson stain: y = 298.2 + 5.8, R2 = 0.83, p < 0.05; Perls' Prussian-blue-stain: y = 834.1 + 0.67, R2 = 0.88, p < 0.05). Contrast-to-noise-ratio (CNR) measurements of the elastin probe were in good agreement with ICP-MS (y = 0.11x-11.3, R² = 0.73, p < 0.05). Late stage atherosclerotic-plaques displayed the strongest increase in both CNR and gadolinium concentration (p < 0.05). The gadolinium probe did not affect the visualization of the iron-oxide-probe and vice versa. This study demonstrates the feasibility of simultaneous assessment of plaque-burden and inflammatory activity by dual-probe molecular MRI of progressive atherosclerosis. The in-vivo detection and quantification of different MR biomarkers in a single scan could be useful to improve characterization of atherosclerotic-lesions

    Prevention and Intervention Studies with Telmisartan, Ramipril and Their Combination in Different Rat Stroke Models

    Get PDF
    The effects of AT1 receptor blocker, telmisartan, and the ACE inhibitor, ramipril, were tested head-to head and in combination on stroke prevention in hypertensive rats and on potential neuroprotection in acute cerebral ischemia in normotensive rats. Normotensive Wistar rats were treated s.c. 5 days prior to middle cerebral artery occlusion (MCAO) for 90 min with reperfusion. Groups (n = 10 each): (1) sham, (2) vehicle (V; 0,9% NaCl), (3) T (0,5 mg/kg once daily), (4) R (0,01 mg/kg twice daily), (5) R (0,1 mg/kg twice daily) or (6) T (0,5 mg/kg once daily) plus R (0,01 mg/kg twice daily). Twenty-four and 48 h after MCAO, neurological outcome (NO) was determined. Forty-eight h after MCAO, infarct volume by MRI, neuronal survival, inflammation factors and neurotrophin receptor (TrkB) were analysed.Stroke incidence was reduced, survival was prolonged and neurological outcome was improved in all treated SHR-SP with no differences between treated groups. In the acute intervention study, T and T+R, but not R alone, improved NO, reduced infarct volume, inflammation (TNFα), and induced TrkB receptor and neuronal survival in comparison to V.T, R or T+R had similar beneficial effects on stroke incidence and NO in hypertensive rats, confirming BP reduction as determinant factor in stroke prevention. In contrast, T and T+R provided superior neuroprotection in comparison to R alone in normotensive rats with induced cerebral ischemia
    corecore