47 research outputs found

    Theory of Room Temperature Ferromagnet V(TCNE)_x (1.5 < x < 2): Role of Hidden Flat Bands

    Full text link
    Theoretical studies on the possible origin of room temperature ferromagnetism (ferromagnetic once crystallized) in the molecular transition metal complex, V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no definite understanding of crystal structure so far because of sample quality, though the effective valence of V is known to be close to +2. Proposing a new crystal structure for the stoichiometric case of x=2, where the valence of each TCNE molecule is -1 and resistivity shows insulating behavior, exchange interaction among d-electrons on adjacent V atoms has been estimated based on the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that Hund's coupling among d orbitals within the same V atoms and antiferromagnetic coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to hybridization result in overall ferromagnetism (to be precise, ferrimagnetism). This view based on localized electrons is supplemented by the band picture, which indicates the existence of a flat band expected to lead to ferromagnetism as well consistent with the localized view. The off-stoichiometric cases (x<2), which still show ferromagnetism but semiconducting transport properties, have been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3 (March issue), in press; 6 pages, 8 figure

    Interfacial charge transfer in nanoscale polymer transistors

    Get PDF
    Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors. While the details remain elusive in many systems, this charge transfer has been inferred in a number of photoemission experiments. We present electronic transport measurements in very short channel (L<100L < 100 nm) transistors made from poly(3-hexylthiophene) (P3HT). As channel length is reduced, the evolution of the contact resistance and the zero-gate-voltage conductance are consistent with such charge transfer. Short channel conduction in devices with Pt contacts is greatly enhanced compared to analogous devices with Au contacts, consistent with charge transfer expectations. Alternating current scanning tunneling microscopy (ACSTM) provides further evidence that holes are transferred from Pt into P3HT, while much less charge transfer takes place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure

    Electroluminescent Characteristics of DBPPV–ZnO Nanocomposite Polymer Light Emitting Devices

    Get PDF
    We have demonstrated that fabrication and characterization of nanocomposite polymer light emitting devices with metal Zinc Oxide (ZnO) nanoparticles and 2,3-dibutoxy-1,4-poly(phenylenevinylene) (DBPPV). The current and luminance characteristics of devices with ZnO nanoparticles are much better than those of device with pure DBPPV. Optimized maximum luminance efficiencies of DBPPV–ZnO (3:1 wt%) before annealing (1.78 cd/A) and after annealing (2.45 cd/A) having a brightness 643 and 776 cd/m2at a current density of 36.16 and 31.67 mA/cm2are observed, respectively. Current density–voltage and brightness–voltage characteristics indicate that addition of ZnO nanoparticles can facilitate electrical injection and charge transport. The thermal annealing is thought to result in the formation of an interfacial layer between emissive polymer film and cathode

    Photochemical Charge Separation in Poly(3-hexylthiophene) (P3HT) Films Observed with Surface Photovoltage Spectroscopy

    Full text link
    Surface photovoltage spectroscopy (SPS) was used to probe photon induced charge separation in thin films of regioregular and regiorandom poly(3-hexylthiophene) (P3HT) as a function of excitation energy. Both positive and negative photovoltage signals were observed under sub-band-gap (&lt;2.0 eV) and super-band-gap (&gt;2.0 eV) excitation of the polymer. The dependence of the spectra on substrate work function, thermal annealing, film thickness, and illumination intensity was investigated, allowing the identification of interface, charge transfer (CT), and band-gap states in the amorphous and crystalline regions of the polymer films. The ability to probe these states in polymer films will aid the development and optimization of organic electronic devices such as photovoltaics (OPVs), light-emitting diodes (OLEDs), and field effect transistors (OFETs). The direction and size of the observed photovoltage features can be explained using the depleted semiconductor model. © 2013 American Chemical Society

    Preparation and characterization of an organic-based magnet Papers included in the thesis Paper I Near edge x-ray absorption studies of Na-doped tetracyanoethylene films: a model system for the V(TCNE) x room temperature molecular magnet Paper II The unoc

    No full text
    Abstract In the growing field of spintronics there is a strong need for development of flexible lightweight semi-conducting magnets. Molecular organic-based magnets are attractive candidates since it is possible to tune their properties by organic chemistry, making them socalled &quot;designer magnets&quot;. Vanadium tetracyanoethylene, V(TCNE) x , is particularly interesting since it is a semiconductor with Curie temperature above room temperature (T C~4 00 K). The main problem with these organic-based magnets is that they are extremely air sensitive. This thesis reports on the frontier electronic structure of the V(TCNE) x by characterization with photoelectron spectroscopy (PES) and near edge x-ray absorption fin

    Spin injection/detection using an organic-based magnetic semiconductor

    No full text
    The new paradigm of electronics, 'spintronics', promises to extend the functionality of information storage and processing in conventional electronics(1). The principal spintronics device, the 'spin valve', consists of two magnetic layers decoupled by a spin-transporting spacer, which allows parallel (on) and antiparallel (off) alignment of the magnetizations (spins) of the two magnetic layers. The device resistance then depends on the spin alignment controlled by the external magnetic field. In pursuit of semiconductor spintronics(2), there have been intensive efforts devoted to develop room-temperature magnetic semiconductors(3) and also to incorporate both inorganic semiconductors(4) and carbon-based materials(5-11) as the spin-transporting channels. Molecule/organic-based magnets, which allow chemical tuning of electronic and magnetic properties, are a promising new class of magnetic materials for future spintronic applications(12,13). Here, we report the realization of an organic-based magnet as an electron spin polarizer in the standard spintronics device geometry. A thin non-magnetic organic semiconductor layer and an epitaxial ferromagnetic oxide film were employed to form a hybrid magnetic tunnel junction. The results demonstrate the spin-polarizing nature of the organic-based magnetic semiconductor, vanadium(TCNE: tetracyanoethylene)(x) (x similar to 2; T(c) similar to 400 K), and its function as a spin injector/detector in hybrid magnetic multilayer devices.close75
    corecore