309 research outputs found

    Semantics of a verification-oriented subset of VHDL

    Full text link

    Use of a candidate gene array to delineate gene expression patterns in cattle selected for resistance or susceptibility to intestinal nematodes

    Get PDF
    In the present study, we use microarray technology to investigate the expression patterns of 381 genes with known association to host immune responses. Hybridization targets were derived from previously characterized bovine cDNAs. A total of 576 reporters (473 sequence-validated cDNAs and 77 controls) were spotted onto glass slides in two sets of four replicates. Two color, comparative hybridizations across both mesenteric lymph node (MLN) and small intestine mucosa (SIM) RNA samples were done between animals with previously demonstrated phenotypic differences based on natural exposure to gastro- intestinal (GI) nematodes over a 6-month exposure period. A total of 138 significant hybridization differences were detected by mixed model analysis of variance. A subset of these significant differences was validated by quantitative, real-time RT-PCR to assay transcript levels for 18 genes. These results confirmed that in the SIM, susceptible animals showed significantly higher levels in the genes encoding IGHG1, CD3E, ACTB, IRF1, CCL5 and C3, while in the MLN of resistant animals, higher levels of expression were confirmed for PTPRC, CD1D and ITGA4. Combined, the results indicate that immune responses against GI nematode infections involve multiple response pathways. Higher levels of expression for IgE receptor, integrins, complement, monocyte/macrophage and tissue factors are related to resistance. In contrast, higher levels of expression for immunoglobulin chains and TCRs are related to susceptibility. Identification of these genes provides a framework to better understand the genetic variation underlying parasite resistance

    Selective reduction of layers at low temperature in artificial superlattice thin films

    Get PDF
    Reduction and oxidation in transition-metal oxides are keys to develop technologies related to energy and the environment. Here we report the selective topochemical reduction observed when artificial superlattices with transition-metal oxides are treated at a temperature below 300 °C with CaH2. [CaFeO2]m/[SrTiO3]n infinite-layer/perovskite artificial superlattice thin films were obtained by low-temperature reduction of [CaFeO2.5]m/[SrTiO3]n brownmillerite/perovskite artificial superlattice thin films. By the reduction only the CaFeO2.5 layers in the artificial superlattices were reduced to the CaFeO2 infinite layers whereas the SrTiO3 layers were unchanged. The observed low-temperature reduction behaviors strongly suggest that the oxygen ion diffusion in the artificial superlattices is confined within the two-dimensional brownmillerite layers. The reduced artificial superlattice could be reoxidized, and thus, the selective reduction and oxidation of the constituent layers in the perovskite-structure framework occur reversibly

    The landscape of gifted and talented education in England and Wales: How are teachers implementing policy?

    Get PDF
    This is an Author's Accepted Manuscript of an article published in Research Papers in Education, 27(2), 167-186, 2012, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/02671522.2010.509514.This paper explores the evidence relating to how primary schools are responding to the ‘gifted and talented’ initiative in England and Wales. A questionnaire survey which invited both closed and open-ended responses was carried out with a national sample of primary schools. The survey indicated an increasing proportion of coordinators, compared with a survey carried out in 1996, were identifying their gifted and talented children as well as having associated school policies. However, the survey also highlighted a number of issues which need addressing if the initiative is to achieve its objective of providing the best possible educational opportunities for children. For example, it was found that a significant number of practitioners were not aware of the existence of the National Quality Standards for gifted and talented education, provided by the UK government in 2007, and the subject-specific criteria provided by the UK’s Curriculum Authority for identification and provision have been largely ignored. The process of identifying children to be placed on the ‘gifted and talented’ register seems haphazard and based on pragmatic reasons. Analysis of teachers’ responses also revealed a range of views and theoretical positioning held by them, which have implications for classroom practice. As the ‘gifted and talented’ initiative in the UK is entering a second decade, and yet more significant changes in policy are introduced, pertinent questions need to be raised and given consideration

    Random Fan-Out State Induced by Site-Random Interlayer Couplings

    Full text link
    We study the low-temperature properties of a classical Heisenberg model with site-random interlayer couplings on the cubic lattice. This model is introduced as a simplified effective model of Sr(Fe1−x_{1-x}Mnx_{x})O2_2, which was recently synthesized. In this material, when x=0.3x=0.3, (πππ)(\pi\pi\pi) and (ππ0)(\pi\pi0) mixed ordering is observed by neutron diffraction measurements. By Monte Carlo simulations, we find an exotic bulk spin structure that explains the experimentally obtained results. We name this spin structure the "random fan-out state". The mean-field calculations provide an intuitive understanding of this phase being induced by the site-random interlayer couplings. Since Rietveld analysis assuming the random fan-out state agrees well with the neutron diffraction pattern of Sr(Fe0.7_{0.7}Mn0.3_{0.3})O2_2, we conclude that the random fan-out state is reasonable for the spin-ordering pattern of Sr(Fe0.7_{0.7}Mn0.3_{0.3})O2_2 at the low-temperature phase.Comment: 13 pages, 12 figure

    Field-induced evolution of magnetic ordering in the quantum spin system (CuBr)Sr<sub>2</sub>Nb<sub>3</sub>O<sub>10</sub> with a ⅓ magnetization plateau

    Get PDF
    The field-induced evolution of the magnetic ordering in (CuBr)Sr<sub>2</sub>Nb<sub>3</sub>O<sub>10</sub> with a 1/3 magnetization plateau has been investigated by neutron diffraction under magnetic fields up to 10 T. With an increasing magnetic field, the zero-field helical antiferromagnetic (AFM) phase, AF1, with Îș = [0 3/8 1/2] is replaced by a simple ferromagnetic phase with Îș = [0 0 0], the formation of which is, however, retarded by the appearance of a second AFM, AF2, with Îș = [0 1/3 &#8764;0.46]. Upon further increasing of the magnetic field, the AF2 phase disappears and only the ferromagnetic phase persists. The results clearly show that the magnetization plateau, induced by the competition between field-induced ferromagnetic, F, and AF2 phases, is coincidentally situated at M = 1/3 MS of the dc magnetization curve. The AF1 and AF2 phases have strongly differing magnetic propagation vectors and are therefore not directly related

    Honeycomb-Layered Oxides With Silver Atom Bilayers and Emergence of Non-Abelian SU(2) Interactions

    Get PDF
    Honeycomb-layered oxides with monovalent or divalent, monolayered cationic lattices generally exhibit myriad crystalline features encompassing rich electrochemistry, geometries, and disorders, which particularly places them as attractive material candidates for next-generation energy storage applications. Herein, global honeycomb-layered oxide compositions, Ag2M2TeO6 ((Formula presented.).) exhibiting (Formula presented.) atom bilayers with sub-valent states within Ag-rich crystalline domains of Ag6M2TeO6 and (Formula presented.) -deficient domains of (Formula presented.) ((Formula presented.)). The (Formula presented.) -rich material characterized by aberration-corrected transmission electron microscopy reveals local atomic structural disorders characterized by aperiodic stacking and incoherency in the bilayer arrangement of (Formula presented.) atoms. Meanwhile, the global material not only displays high ionic conductivity but also manifests oxygen-hole electrochemistry during silver-ion extraction. Within the (Formula presented.) -rich domains, the bilayered structure, argentophilic interactions therein and the expected (Formula presented.) sub-valent states ((Formula presented.), etc.) are theoretically understood via spontaneous symmetry breaking of SU(2) 7 U(1) gauge symmetry interactions amongst 3 degenerate mass-less chiral fermion states, justified by electron occupancy of silver (Formula presented.) and 5s orbitals on a bifurcated honeycomb lattice. This implies that bilayered frameworks have research applications that go beyond the confines of energy storage

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∌1 m and ∌1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≄500 ÎŒm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 ÎŒm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    Mixed alkali-ion transport and storage in atomic-disordered honeycomb layered NaKNi2TeO6

    Get PDF
    Honeycomb layered oxides constitute an emerging class of materials that show interesting physicochemical and electrochemical properties. However, the development of these materials is still limited. Here, we report the combined use of alkali atoms (Na and K) to produce a mixed-alkali honeycomb layered oxide material, namely, NaKNi2TeO6. Via transmission electron microscopy measurements, we reveal the local atomic structural disorders characterised by aperiodic stacking and incoherency in the alternating arrangement of Na and K atoms. We also investigate the possibility of mixed electrochemical transport and storage of Na+ and K+ ions in NaKNi2TeO6. In particular, we report an average discharge cell voltage of about 4 V and a specific capacity of around 80 mAh g–1 at low specific currents (i.e., &lt; 10 mA g–1) when a NaKNi2TeO6-based positive electrode is combined with a room-temperature NaK liquid alloy negative electrode using an ionic liquid-based electrolyte solution. These results represent a step towards the use of tailored cathode active materials for “dendrite-free” electrochemical energy storage systems exploiting room-temperature liquid alkali metal alloy materials
    • 

    corecore