422 research outputs found

    Vitamin A, cancer treatment and prevention: The new role of cellular retinol binding proteins

    Get PDF
    Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs). CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients' screening for a more personalized and efficacy retinoid therapy

    Traditional Approaches and Emerging Biotechnologies in Grapevine Virology

    Get PDF
    Environmental changes and global warming may promote the emergence of unknown viruses, whose spread is favored by the trade in plant products. Viruses represent a major threat to viticulture and the wine industry. Their management is challenging and mostly relies on prophylactic measures that are intended to prevent the introduction of viruses into vineyards. Besides the use of virus-free planting material, the employment of agrochemicals is a major strategy to prevent the spread of insect vectors in vineyards. According to the goal of the European Green Deal, a 50% decrease in the use of agrochemicals is expected before 2030. Thus, the development of alternative strategies that allow the sustainable control of viral diseases in vineyards is strongly needed. Here, we present a set of innovative biotechnological tools that have been developed to induce virus resistance in plants. From transgenesis to the still-debated genome editing technologies and RNAi-based strategies, this review discusses numerous illustrative studies that highlight the effectiveness of these promising tools for the management of viral infections in grapevine. Finally, the development of viral vectors from grapevine viruses is described, revealing their positive and unconventional roles, from targets to tools, in emerging biotechnologies

    Modified differentials and basic cohomology for Riemannian foliations

    Full text link
    We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincar\'e duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.Comment: 20 pages, references added, minor corrections mad

    Transglutaminase 2 in cartilage homoeostasis: novel links with inflammatory osteoarthritis.

    Get PDF
    Transglutaminase 2 (TG2) is highly expressed during chondrocyte maturation and contributes to the formation of a mineralised scaffold by introducing crosslinks between extracellular matrix (ECM) proteins. In healthy cartilage, TG2 stabilises integrity of ECM and likely influences cartilage stiffness and mechanistic properties. At the same time, the abnormal accumulation of TG2 in the ECM promotes chondrocyte hypertrophy and cartilage calcification, which might be an important aspect of osteoarthritis (OA) initiation. Although excessive joint loading and injuries are one of the main causes leading to OA development, it is now being recognised that the presence of inflammatory mediators accelerates OA progression. Inflammatory signalling is known to stimulate the extracellular TG2 activity in cartilage and promote TG2-catalysed crosslinking of molecules that promote chondrocyte osteoarthritic differentiation. It is, however, unclear whether TG2 activity aims to resolve or aggravate damages within the arthritic joint. Better understanding of the complex signalling pathways linking inflammation with TG2 activities is needed to identify the role of TG2 in OA and to define possible avenues for therapeutic interventions
    corecore