23,493 research outputs found

    Disparities in use of mental health and substance abuse services by Asian and Native Hawaiian/Other Pacific Islander women

    Get PDF
    The purpose of this study was to determine if disparities exist in lifetime utilization of mental health/substance abuse services among Asian, Native Hawaiian/Other Pacific Islander (NHOPI) and white mothers. The study sample was comprised of mothers assessed to be at-risk (n = 491) and not at-risk (n = 218) for child maltreatment in the Hawaii Healthy Start Program study. Multiple logistic regression models were used to test the effects of predisposing, need, and enabling factors on utilization of services. Results revealed that, among mothers with depressive symptoms, compared with whites, Asians and NHOPI were significantly less likely to have received services. There were no significant racial differences in use of mental health/substance use services by other factors. These results suggest that racial disparities exist in utilization of mental health/substance abuse services among mothers with depressive symptoms. Future research is needed to identify barriers and facilitators to accessing needed services for Asian and NHOPI women

    A Difference Version of Nori's Theorem

    Full text link
    We consider (Frobenius) difference equations over (F_q(s,t), phi) where phi fixes t and acts on F_q(s) as the Frobenius endomorphism. We prove that every semisimple, simply-connected linear algebraic group G defined over F_q can be realized as a difference Galois group over F_{q^i}(s,t) for some i in N. The proof uses upper and lower bounds on the Galois group scheme of a Frobenius difference equation that are developed in this paper. The result can be seen as a difference analogue of Nori's Theorem which states that G(F_q) occurs as (finite) Galois group over F_q(s).Comment: 29 page

    A gentle introduction to the functional renormalization group: the Kondo effect in quantum dots

    Full text link
    The functional renormalization group provides an efficient description of the interplay and competition of correlations on different energy scales in interacting Fermi systems. An exact hierarchy of flow equations yields the gradual evolution from a microscopic model Hamiltonian to the effective action as a function of a continuously decreasing energy cutoff. Practical implementations rely on suitable truncations of the hierarchy, which capture nonuniversal properties at higher energy scales in addition to the universal low-energy asymptotics. As a specific example we study transport properties through a single-level quantum dot coupled to Fermi liquid leads. In particular, we focus on the temperature T=0 gate voltage dependence of the linear conductance. A comparison with exact results shows that the functional renormalization group approach captures the broad resonance plateau as well as the emergence of the Kondo scale. It can be easily extended to more complex setups of quantum dots.Comment: contribution to Les Houches proceedings 2006, Springer styl

    Quantum-Classical Correspondence of Dynamical Observables, Quantization and the Time of Arrival Correspondence Problem

    Full text link
    We raise the problem of constructing quantum observables that have classical counterparts without quantization. Specifically we seek to define and motivate a solution to the quantum-classical correspondence problem independent from quantization and discuss the general insufficiency of prescriptive quantization, particularly the Weyl quantization. We demonstrate our points by constructing time of arrival operators without quantization and from these recover their classical counterparts

    Equivalence of switching linear systems by bisimulation

    Get PDF
    A general notion of hybrid bisimulation is proposed for the class of switching linear systems. Connections between the notions of bisimulation-based equivalence, state-space equivalence, algebraic and input–output equivalence are investigated. An algebraic characterization of hybrid bisimulation and an algorithmic procedure converging in a finite number of steps to the maximal hybrid bisimulation are derived. Hybrid state space reduction is performed by hybrid bisimulation between the hybrid system and itself. By specializing the results obtained on bisimulation, also characterizations of simulation and abstraction are derived. Connections between observability, bisimulation-based reduction and simulation-based abstraction are studied.\ud \u

    A Substantial Population of Low Mass Stars in Luminous Elliptical Galaxies

    Full text link
    The stellar initial mass function (IMF) describes the mass distribution of stars at the time of their formation and is of fundamental importance for many areas of astrophysics. The IMF is reasonably well constrained in the disk of the Milky Way but we have very little direct information on the form of the IMF in other galaxies and at earlier cosmic epochs. Here we investigate the stellar mass function in elliptical galaxies by measuring the strength of the Na I doublet and the Wing-Ford molecular FeH band in their spectra. These lines are strong in stars with masses <0.3 Msun and weak or absent in all other types of stars. We unambiguously detect both signatures, consistent with previous studies that were based on data of lower signal-to-noise ratio. The direct detection of the light of low mass stars implies that they are very abundant in elliptical galaxies, making up >80% of the total number of stars and contributing >60% of the total stellar mass. We infer that the IMF in massive star-forming galaxies in the early Universe produced many more low mass stars than the IMF in the Milky Way disk, and was probably slightly steeper than the Salpeter form in the mass range 0.1 - 1 Msun.Comment: To appear in Natur

    Trends in alcohol use among Hawai‘i adolescents

    Get PDF
    It is important to review trends in youth alcohol use over time in order to effectively tailor prevention programs to address those trends. This article reviews data on alcohol use behaviors from the Centers for Disease Control and Prevention\u27s Youth Risk Behavior Survey in Hawai‘i from 1993 to 2007. Five alcohol use indicators were examined and stratified by grade level, from 9th grade through 12th grade. Significant drops in nearly all indicators are seen among 9th through 11th graders, but not among 12th graders. This suggests that Hawai‘i youth are responding well to anti-alcohol messaging as young teens, but a different approach may be needed to target older teens

    Radio relics in cosmological simulations

    Full text link
    Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock fronts and applying a parametric model for the radio emission allows us to simulate the formation of radio relics. We analyze a simulated shock front in detail. We find a rather broad Mach number distribution. The Mach number affects strongly the number density of relativistic electrons in the downstream area, hence, the radio luminosity varies significantly across the shock surface. The abundance of radio relics can be modeled with the help of the radio power probability distribution which aims at predicting radio relic number counts. Since the actual electron acceleration efficiency is not known, predictions for the number counts need to be normalized by the observed number of radio relics. For the characteristics of upcoming low frequency surveys we find that about thousand relics are awaiting discovery.Comment: 10 pages, 4 figures, Invited talk at the conference "Diffuse Relativistic Plasmas", Bangalore, 1-4 March 2011; in press in special issue of Journal of Astrophysics and Astronom

    Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale system for solid-state quantum information processing. Its spin-dependent photoluminescence has enabled sensitive measurements on single N-V centers, such as: electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room temperature spin coherence times as long as 58 microseconds have been reported for N-V center ensembles. Here, we have developed an angle-resolved magneto-photoluminescence microscopy apparatus to investigate the anisotropic electron spin interactions of single N-V centers at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighboring dark nitrogen spins that are not otherwise detected by photoluminescence. The latter results demonstrate a means of investigating small numbers of dark spins via a single bright spin under ambient conditions.Comment: 13 pages, 4 figure
    • 

    corecore