4,024 research outputs found
Clustering and collision of inertial particles in random velocity fields
The influence of clustering on the collision rate of inertial particles in a
smooth random velocity field, mimicking the smaller scales of a turbulent flow,
is analyzed. For small values of the the ratio between the relaxation time of
the particle velocity and the characteristic time of the field, the effect of
clusters is to make more energetic collisions less likely. The result is
independent of the flow dimensionality and is due only to the origin of
collisions in the process of caustic formation.Comment: 4 pages, 3 figures, revtex
Particle dispersion models and drag coefficients for particles in turbulent flows
Some of the concepts underlying particle dispersion due to turbulence are reviewed. The traditional approaches to particle dispersion in homogeneous, stationary turbulent fields are addressed, and recent work on particle dispersion in large scale turbulent structures is reviewed. The state of knowledge of particle drag coefficients in turbulent gas-particle flows is also reviewed
Clustering and collisions of heavy particles in random smooth flows
Finite-size impurities suspended in incompressible flows distribute
inhomogeneously, leading to a drastic enhancement of collisions. A description
of the dynamics in the full position-velocity phase space is essential to
understand the underlying mechanisms, especially for polydisperse suspensions.
These issues are here studied for particles much heavier than the fluid by
means of a Lagrangian approach. It is shown that inertia enhances collision
rates through two effects: correlation among particle positions induced by the
carrier flow and uncorrelation between velocities due to their finite size. A
phenomenological model yields an estimate of collision rates for particle pairs
with different sizes. This approach is supported by numerical simulations in
random flows.Comment: 12 pages, 9 Figures (revTeX 4) final published versio
Measurement of Both Gas and Particle Velocity in Turbulent Two-Phase Flow
A laser-Doppler anemometer was used to measure the velocity of both the gas and particles in a turbulent two-phase flow for conditions when the distribution of the velocities of the two phases overlaps. The velocities from the two phases are separated by comparing the Doppler amplitude to the pedestal amplitude. Results of the measure of the gas-particle flow downstream of a nozzle mounted in a circular pipe are presented
An Audible Demonstration Of The Speed Of Sound In Bubbly Liquids
The speed of sound in a bubbly liquid is strongly dependent upon the volume fraction of the gas phase, the bubble size distribution, and the frequency of the acoustic excitation. At sufficiently low frequencies, the speed of sound depends primarily on the gas volume fraction. This effect can be audibly demonstrated using a one-dimensional acoustic waveguide, in which the flow rate of air bubbles injected into a water-filled tube is varied by the user. The normal modes of the waveguide are excited by the sound of the bubbles being injected into the tube. As the flow rate is varied, the speed of sound varies as well, and hence, the resonance frequencies shift. This can be clearly heard through the use of an amplified hydrophone and the user can create aesthetically pleasing and even musical sounds. In addition, the apparatus can be used to verify a simple mathematical model known as Wood's equation that relates the speed of sound of a bubbly liquid to its void fraction. (c) 2008 American Association of Physics Teachers.Mechanical Engineerin
Cassiopeia A: dust factory revealed via submillimetre polarimetry
If Type-II supernovae - the evolutionary end points of short-lived, massive
stars - produce a significant quantity of dust (>0.1 M_sun) then they can
explain the rest-frame far-infrared emission seen in galaxies and quasars in
the first Gyr of the Universe. Submillimetre observations of the Galactic
supernova remnant, Cas A, provided the first observational evidence for the
formation of significant quantities of dust in Type-II supernovae. In this
paper we present new data which show that the submm emission from Cas A is
polarised at a level significantly higher than that of its synchrotron
emission. The orientation is consistent with that of the magnetic field in Cas
A, implying that the polarised submm emission is associated with the remnant.
No known mechanism would vary the synchrotron polarisation in this way and so
we attribute the excess polarised submm flux to cold dust within the remnant,
providing fresh evidence that cosmic dust can form rapidly. This is supported
by the presence of both polarised and unpolarised dust emission in the north of
the remnant, where there is no contamination from foreground molecular clouds.
The inferred dust polarisation fraction is unprecedented (f_pol ~ 30%) which,
coupled with the brief timescale available for grain alignment (<300 yr),
suggests that supernova dust differs from that seen in other Galactic sources
(where f_pol=2-7%), or that a highly efficient grain alignment process must
operate in the environment of a supernova remnant.Comment: In press at MNRAS, 10 pages, print in colou
Application of Computer Modeling in the Design of a Multiphase Flow Metering System
Two numerical models (CONVAS and PSI-Cell) for analyzing steady nonequilibrium gas-particle flow through a venturi and an orifice plate are discussed. These models are validated by comparing the predictions with experimental data. Utilizing these models, parametric curves for Venturis and orifice plates have been generated. Using these curves a methodology has been outlined for designing a twophase mass flowmeter
Electron-impact ionization of atomic hydrogen at 2 eV above threshold
The convergent close-coupling method is applied to the calculation of fully
differential cross sections for ionization of atomic hydrogen by 15.6 eV
electrons. We find that even at this low energy the method is able to yield
predictive results with small uncertainty. As a consequence we suspect that the
experimental normalization at this energy is approximately a factor of two too
high.Comment: 10 page
Transition phenomena in unstably stratified turbulent flows
We study experimentally and theoretically transition phenomena caused by the
external forcing from Rayleigh-Benard convection with the large-scale
circulation (LSC) to the limiting regime of unstably stratified turbulent flow
without LSC whereby the temperature field behaves like a passive scalar. In the
experiments we use the Rayleigh-B\'enard apparatus with an additional source of
turbulence produced by two oscillating grids located nearby the side walls of
the chamber. When the frequency of the grid oscillations is larger than 2 Hz,
the large-scale circulation (LSC) in turbulent convection is destroyed, and the
destruction of the LSC is accompanied by a strong change of the mean
temperature distribution. However, in all regimes of the unstably stratified
turbulent flow the ratio varies slightly (even in the range
of parameters whereby the behaviour of the temperature field is different from
that of the passive scalar). Here are the integral scales of
turbulence along x, y, z directions, T and \theta are the mean and fluctuating
parts of the fluid temperature. At all frequencies of the grid oscillations we
have detected the long-term nonlinear oscillations of the mean temperature. The
theoretical predictions based on the budget equations for turbulent kinetic
energy, turbulent temperature fluctuations and turbulent heat flux, are in
agreement with the experimental results.Comment: 14 pages, 14 figures, REVTEX4-1, revised versio
- …