2,169,604 research outputs found

    Doubly magic nuclei from Lattice QCD forces at MPS=M_{PS}=469 MeV/c2^2

    Get PDF
    We perform ab initio self-consistent Green's function calculations of the closed shell nuclei 4^{\rm 4}He, 16^{\rm 16}O and 40^{\rm 40}Ca, based on two-nucleon potentials derived from Lattice QCD simulations, in the flavor SU(3) limit and at the pseudo-scalar meson mass of 469~MeV/c2^{\rm 2}. The nucleon-nucleon interaction is obtained using the HAL QCD method and its short-distance repulsion is treated by means of ladder resummations outside the model space. Our results show that this approach diagonalises ultraviolet degrees of freedom correctly. Therefore, ground state energies can be obtained from infrared extrapolations even for the relatively hard potentials of HAL QCD. Comparing to previous Brueckner Hartree-Fock calculations, the total binding energies are sensibly improved by the full account of many-body correlations. The results suggest an interesting possible behaviour in which nuclei are unbound at very large pion masses and islands of stability appear at first around the traditional doubly-magic numbers when the pion mass is lowered toward its physical value. The calculated one-nucleon spectral distributions are qualitatively close to those of real nuclei even for the pseudo-scalar meson mass considered here.Comment: 7 pages, 4 figures, RIKEN-QHP-286, RIKEN-iTHEMS-Report-1

    Characterization of Si/Si_(1-y)C_y superlattices grown by surfactant assisted molecular beam epitaxy

    Get PDF
    Si/Si_(0.97)C_(0.03) superlattices grown on Si(001) substrates by Sb surfactant assisted molecular beam epitaxy are characterized by in situ reflection high energy electron diffraction (RHEED), atomic force microscopy, transmission electron microscopy (TEM), and high resolution x‐ray diffraction. The RHEED shows that, in the absence of Sb, the growth front roughens during Si_(0.97)C_(0.03) growth and smooths during subsequent Si growth. In contrast, when Sb is present, the growth front remains smooth throughout the growth. This observation is confirmed by cross‐sectional TEM, which reveals that for samples grown without the use of Sb, the Si/Si_(0.97)C_(0.03) interfaces (Si_(0.97)C_(0.03) on Si) are much more abrupt than the Si_(0.97)C_(0.03)/Si interfaces. In the case of Sb assisted growth, there is no observable difference in abruptness between the two types of interfaces. Atomic force microscopy micrographs of the Si_(0.97)C_(0.03) surface reveal features that could be the source of the roughness observed by RHEED and TEM

    Equations to assess the impact resistance of fiber composites

    Get PDF
    Numerical analysis of impact resistance of composite materials containing fibers is discussed. Mathematical model of longitudinal impact resistance is presented. Potential impact resistance of various fiber composites as obtained by numerical analysis is presented as plotted curve

    Sb-surfactant-mediated growth of Si/Si1–yCy superlattices by molecular-beam epitaxy

    Get PDF
    Si/Si0.97C0.03 superlattices were grown on Si(001) substrates by molecular beam epitaxy (MBE) to study the use of Sb as a surfactant during Si1–yCy growth. In situ reflection high energy electron diffraction (RHEED) shows that while carbon easily disrupts the two-dimensional growth of homoepitaxial Si, such disruption is suppressed for layers grown on Sb-terminated Si(001) surfaces. Cross-sectional transmission electron microscopy (TEM) reveals that for samples grown without the use of Sb, the Si/Si0.97C0.03 interfaces (Si0.97C0.03 on Si) were much more abrupt than Si0.97C0.03/Si interfaces. In the case of Sb-mediated growth, differences in abruptness between the two types of interfaces were not readily observable

    Low error measurement-free phase gates for qubus computation

    Full text link
    We discuss the desired criteria for a two-qubit phase gate and present a method for realising such a gate for quantum computation that is measurement-free and low error. The gate is implemented between qubits via an intermediate bus mode. We take a coherent state as the bus and use cross-Kerr type interactions between the bus and the qubits. This new method is robust against parameter variations and is thus low error. It fundamentally improves on previous methods due its deterministic nature and the lack of approximations used in the geometry of the phase rotations. This interaction is applicable both to solid state and photonic qubit systems.Comment: 6 pages, 4 figures. Published versio
    corecore