367 research outputs found
Effective dissipative dynamics for polarized photons
In the framework of open quantum systems, the propagation of polarized
photons can be effectively described using quantum dynamical semigroups. These
extended time-evolutions induce irreversibility and dissipation. Planned, high
sensitive experiments, both in the laboratory and in space, will be able to put
stringent bounds on these non-standard effects.Comment: 15 pages, plain-TeX, no figure
On linearity of separating multi-particle differential Schr\"odinger operators for identical particles
We show that hierarchies of differential Schroedinger operators for identical
particles which are separating for the usual (anti-)symmetric tensor product,
are necessarily linear, and offer some speculations on the source of quantum
linearity.Comment: As accepted by Journal of Mathematical Physics. Original title
"Separating multi-particle differential Schroedinger operators for identical
particles are necessarily linear". Some new discussion and references. Main
result unchanged. Uses RevTeX 4, 9 page
Probing possible decoherence effects in atmospheric neutrino oscillations
It is shown that the results of the Super-Kamiokande atmospheric neutrino
experiment, interpreted in terms of nu_munu_tau flavor transitions, can
probe possible decoherence effects induced by new physics (e.g., by quantum
gravity) with high sensitivity, supplementing current laboratory tests based on
kaon oscillations and on neutron interferometry. By varying the (unknown)
energy dependence of such effects, one can either obtain strong limits on their
amplitude, or use them to find an unconventional solution to the atmospheric nu
anomaly based solely on decoherence.Comment: Title changed; major changes in the text; includes the discussion of
a new solution to the atmosheric neutrino anomaly, based on decoherence; a
second figure and a note have been adde
A model for decoherence of entangled beauty
In the context of the entangled state produced at the
resonance, we consider a modification of the usual
quantum-mechanical time evolution with a dissipative term, which contains only
one parameter denoted by and respects complete positivity. In this
way a decoherence effect is introduced in the time evolution of the 2-particle
state, which becomes stronger with increasing distance between
the two particles. While our model of time evolution has decoherence for the
2-particle system, we assume that, after the decay of one of the two B mesons,
the resulting 1-particle state obeys the purely quantum-mechanical time
evolution. From the data on dilepton events we derive an upper bound on
. We also show how is related to the so-called ``decoherence
parameter'' , which parameterizes decoherence in neutral flavoured
meson--antimeson systems.Comment: 11 pages, revtex. Two references and some comments added, version to
be published in Phys. Rev.
Geometric discord and Measurement-induced nonlocality for well known bound entangled states
We employ geometric discord and measurement induced nonlocality to quantify
non classical correlations of some well-known bipartite bound entangled states,
namely the two families of Horodecki's (, and
dimensional) bound entangled states and that of Bennett etal's in
dimension. In most of the cases our results are analytic and both
the measures attain relatively small value. The amount of quantumness in the
bound entangled state of Benatti etal and the state
having the same matrix representation (in computational basis) is same.
Coincidently, the Werner and isotropic states also exhibit the
same property, when seen as dimensional states.Comment: V2: Title changed, one more state added; 11 pages (single column), 2
figures, accepted in Quantum Information Processin
Multi-mode entanglement of N harmonic oscillators coupled to a non-Markovian reservoir
Multi-mode entanglement is investigated in the system composed of coupled
identical harmonic oscillators interacting with a common environment. We treat
the problem very general by working with the Hamiltonian without the
rotating-wave approximation and by considering the environment as a
non-Markovian reservoir to the oscillators. We invoke an -mode unitary
transformation of the position and momentum operators and find that in the
transformed basis the system is represented by a set of independent harmonic
oscillators with only one of them coupled to the environment. Working in the
Wigner representation of the density operator, we find that the covariance
matrix has a block diagonal form that it can be expressed in terms of multiples
of and matrices. This simple property allows to treat
the problem to some extend analytically. We illustrate the advantage of working
in the transformed basis on a simple example of three harmonic oscillators and
find that the entanglement can persists for long times due to presence of
constants of motion for the covariance matrix elements. We find that, in
contrast to what one could expect, a strong damping of the oscillators leads to
a better stationary entanglement than in the case of a weak damping.Comment: 21 pages, 4 figure
Status of atmospheric neutrino(mu)<-->neutrino(tau) oscillations and decoherence after the first K2K spectral data
We review the status of nu_mu-->nu_tau flavor transitions of atmospheric
neutrinos in the 92 kton-year data sample collected in the first phase of the
Super-Kamiokande (SK) experiment, in combination with the recent spectral data
from the KEK-to-Kamioka (K2K) accelerator experiment (including 29 single-ring
muon events). We consider a theoretical framework which embeds flavor
oscillations plus hypothetical decoherence effects, and where both standard
oscillations and pure decoherence represent limiting cases. It is found that
standard oscillations provide the best description of the SK+K2K data, and that
the associated mass-mixing parameters are determined at 1 sigma (and d.o.f.=1)
as: Delta m^2=(2.6 +- 0.4)x10^{-3} eV^2 and sin^2(2theta)=1.00+0.00-0.05. As
compared with standard oscillations, the case of pure decoherence is
disfavored, although it cannot be ruled out yet. In the general case,
additional decoherence effects in the nu_mu-->nu_tau channel do not improve the
fit to the SK and K2K data, and upper bounds can be placed on the associated
decoherence parameter. Such indications, presently dominated by SK, could be
strengthened by further K2K data, provided that the current spectral features
are confirmed with higher statistics. A detailed description of the statistical
analysis of SK and K2K data is also given, using the so-called ``pull''
approach to systematic uncertainties.Comment: 18 pages (RevTeX) + 12 figures (PostScript
Evaluation of macular pigment optical density following femtosecond laser-assisted cataract surgery
Background: To evaluate macular pigment optical density (MPOD) after bimanual femtosecond laser-assisted cataract surgery (FLACS) compared to standard bimanual phacoemulsification (B-MICS). Methods: Aprospective, casematched, comparative cohort study conducted at theInstitute of Ophthalmology, University of Modena and Reggio Emilia (Italy); 30 eyes under wentbimanual FLACS with low-energy Ziemer LDV Z8 (FLACS) and 30 underwent B-MICS standard technique (B-MICS). All interventions were conducted by the same expert surgeon. MPOD using the Macular Pigment Screener II (MPS II) was evaluated at baseline, 7 and 30 days after surgery. As secondary outcomes, we considered best corrected visual acuity (BCVA) and central macular thickness (CMT) obtained using optical coherence tomography. Results: In all cases, a BunnyLens AF IOL was safely implanted in the capsular bag through a1.4 mm incision. We found asignificant reductionin MPOD in both groups at 7 and 30 days; 0.16 ±0.14 and 0.10±0.12 (FLACS) and 0.18±0.13 and 0.15±0.14 (B-MICS), respectively (P<0.05). However, there was no significant difference between the two groups at either 7 (P=0.52) or 30 days (P=0.18). BCVA improved significantly in both groups and CMT increased in both groups (P<0.001, P<0.001, respectively). BCVA and CMT were similar between the groups with a significant difference in CMT in favor of the FLACS group at 30 days (P=0.017). Conclusions: MPOD was reduced in both groups without any significant difference between the FLACS and B-MICS cataract interventions. FLACS is associated with a significantly higher increase of macular thickness at 30 days compared to B-MICS
Damping signatures in future neutrino oscillation experiments
We discuss the phenomenology of damping signatures in the neutrino
oscillation probabilities, where either the oscillating terms or the
probabilities can be damped. This approach is a possibility for tests of
non-oscillation effects in future neutrino oscillation experiments, where we
mainly focus on reactor and long-baseline experiments. We extensively motivate
different damping signatures due to small corrections by neutrino decoherence,
neutrino decay, oscillations into sterile neutrinos, or other mechanisms, and
classify these signatures according to their energy (spectral) dependencies. We
demonstrate, at the example of short baseline reactor experiments, that damping
can severely alter the interpretation of results, e.g., it could fake a value
of smaller than the one provided by Nature. In addition,
we demonstrate how a neutrino factory could constrain different damping models
with emphasis on how these different models could be distinguished, i.e., how
easily the actual non-oscillation effects could be identified. We find that the
damping models cluster in different categories, which can be much better
distinguished from each other than models within the same cluster.Comment: 33 pages, 5 figures, LaTeX. Final version published in JHE
Chaos and Complexity of quantum motion
The problem of characterizing complexity of quantum dynamics - in particular
of locally interacting chains of quantum particles - will be reviewed and
discussed from several different perspectives: (i) stability of motion against
external perturbations and decoherence, (ii) efficiency of quantum simulation
in terms of classical computation and entanglement production in operator
spaces, (iii) quantum transport, relaxation to equilibrium and quantum mixing,
and (iv) computation of quantum dynamical entropies. Discussions of all these
criteria will be confronted with the established criteria of integrability or
quantum chaos, and sometimes quite surprising conclusions are found. Some
conjectures and interesting open problems in ergodic theory of the quantum many
problem are suggested.Comment: 45 pages, 22 figures, final version, at press in J. Phys. A, special
issue on Quantum Informatio
- …