116 research outputs found

    Study on fatigue and energy-dissipation properties of nanolayered Cu/Nb thin films

    Get PDF
    Energy dissipation and fatigue properties of nano-layered thin films are less well studied than bulk properties. Existing experimental methods for studying energy dissipation properties, typically using magnetic interaction as a driving force at different frequencies and a laser-based deformation measurement system, are difficult to apply to two-dimensional materials. We propose a novel experimental method to perform dynamic testing on thin-film materials by driving a cantilever specimen at its fixed end with a bimorph piezoelectric actuator and monitoring the displacements of the specimen and the actuator with a fibre-optic system. Upon vibration, the specimen is greatly affected by its inertia, and behaves as a cantilever beam under base excitation in translation. At resonance, this method resembles the vibrating reed method conventionally used in the viscoelasticity community. The loss tangent is obtained from both the width of a resonance peak and a free-decay process. As for fatigue measurement, we implement a control algorithm into LabView to maintain maximum displacement of the specimen during the course of the experiment. The fatigue S-N curves are obtained

    The interplay of crack hopping, delamination and interface failure in drying nanoparticle films

    Get PDF
    Films formed through the drying of nanoparticle suspensions release the build-up of strain through a variety of different mechanisms including shear banding, crack formation and delamination. Here we show that important connections exist between these different phenomena: delamination depends on the dynamics of crack hopping, which in turn is influenced by the presence of shear bands. We also show that delamination does not occur uniformly across the film. As cracks hop they locally initiate the delamination of the film which warps with a timescale much longer than that associated with the hopping of cracks. The motion of a small region of the delamination front, where the shear component of interfacial crack propagation is believed to be enhanced, results in the deposition of a complex zig-zag pattern on the supporting substrate

    Catalyst composition and impurity-dependent kinetics of nanowire heteroepitaxy.

    Get PDF
    The mechanisms and kinetics of axial Ge-Si nanowire heteroepitaxial growth based on the tailoring of the Au catalyst composition via Ga alloying are studied by environmental transmission electron microscopy combined with systematic ex situ CVD calibrations. The morphology of the Ge-Si heterojunction, in particular, the extent of a local, asymmetric increase in nanowire diameter, is found to depend on the Ga composition of the catalyst, on the TMGa precursor exposure temperature, and on the presence of dopants. To rationalize the findings, a general nucleation-based model for nanowire heteroepitaxy is established which is anticipated to be relevant to a wide range of material systems and device-enabling heterostructures.S.H. acknowledges funding from ERC grant InsituNANO (No. 279342). A.D.G. acknowledges funding from the Marshall Aid Commemoration Commission and the National Science Foundation. C.D. acknowledges funding from the Royal Society. A portion of the research was also performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was performed in part at CINT, a U.S. DOE, Office of Science User Facility. The research was funded in part by the Laboratory Directed Research and Development Program at LANL, an affirmative action equal opportunity employer operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract DE-AC52-06NA25396.This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/nn402208p. Gamalski AD, Perea DE, Yoo J, Li N, Olszta MJ, Colby R, Schreiber DK, Ducati C, Picraux ST, Hofmann S, ACS Nano 2013, 7 (9), 7689–7697, doi:10.1021/nn402208
    • …
    corecore