
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Crystallographic Analysis of Nucleation at Hardness Indentations in High-Purity
Aluminum

Xu, Chaoling; Zhang, Yubin; Lin, Fengxiang; Wu, Guilin ; Liu, Qing; Juul Jensen, Dorte

Published in:
Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science

Link to article, DOI:
10.1007/s11661-016-3704-3

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Xu, C., Zhang, Y., Lin, F., Wu, G., Liu, Q., & Juul Jensen, D. (2016). Crystallographic Analysis of Nucleation at
Hardness Indentations in High-Purity Aluminum. Metallurgical and Materials Transactions A - Physical
Metallurgy and Materials Science, 47A(12), 5863-5870. DOI: 10.1007/s11661-016-3704-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/84001918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s11661-016-3704-3
http://orbit.dtu.dk/en/publications/crystallographic-analysis-of-nucleation-at-hardness-indentations-in-highpurity-aluminum(7cbc0583-bb9a-4693-8c7d-ead7f38f594c).html


Crystallographic Analysis of Nucleation at Hardness Indentations in High 
Purity Aluminum 

C.L. Xu1,2*, Y.B. Zhang2, F.X. Lin2, G. L. Wu1, Q. Liu1, D. Juul Jensen2 

1 College of Material Science and Engineering, Chongqing University, Chongqing 400044, China 

2 Section for Materials Science and Advanced Characterization, Department of Wind Energy, 
Technical University of Denmark, Risø Campus, DK-4000 Roskilde, Denmark 

*corresponding author: chaoxu@dtu.dk 

Abstract: Nucleation at Vickers hardness indentations has been studied in high purity aluminum cold 
rolled 12%. Electron channeling contrast was used to measure the size of the indentations and to 
detect nuclei, while electron backscattering diffraction was used to determine crystallographic 
orientations. It is found that indentations are preferential nucleation sites. The crystallographic 
orientations of the deformed grains affect the hardness and the nucleation potentials at the 
indentations. Higher hardness gives increased nucleation probabilities. Orientation relationships 
between nuclei developed at different indentations within one original grain are analyzed and it is 
found that the orientation distribution of the nuclei is far from random.  It is suggested that it relates to 
the orientations present near the indentation tips which in turn depend on the orientation of the 
selected grain in which they form. Finally possible nucleation mechanisms are briefly discussed. 

Keywords: nucleation of recrystallization, aluminum, orientation relationships, indentations 

1 Introduction 

Nucleation of recrystallization in the bulk of metals is very difficult to control and uncertainties exist 
on active nucleation mechanisms [e.g. 1, 2]. However it is well known that surface imperfections such 
as scratches and hardness indentations stimulate nucleation. The present work deals with the latter. 
Extensive studies have been done to understand the deformation mechanism occurring during 
indenting [e.g. 3-5]. Early work focused on the visualization of the deformation microstructures of the 
volume underneath indentations using split samples and optical microscopy [6, 7]. Newer studies use 
scanning electron microscopy and conventional electron backscattering diffraction (EBSD) [8] as well 
as 3D-EBSD [9] to investigate the size of the affected zone underneath indents. It is generally found 
that hardness indentations cause a high local dislocation density. 

Also several studies have investigated nucleation at hardness indentations [e.g. 10-13]. Upon 
annealing, the increased dislocation density in indentation zones provides a higher driving force for 
nucleation and subsequent growth during recrystallization. It has been found that recrystallization 
depends strongly on the distribution of stored energy below the indentations and that the 
recrystallized volumes closely match the indentation zones [11]. It has also been found that the shape 
of the indenter also has an effect on the nucleation potentials: a sharp indenter leads to more 
nucleation than a ball shaped one [13]. Although it is well documented that hardness indentations 
stimulate nucleation, much less is known about crystallographic effects. Open questions include 

(1) Do grains of different crystallographic orientations have the same potential for stimulating 
nucleation at hardness indentations? 
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(2) Do all nuclei that form at different hardness indentations within a given grain have the same 
crystallographic orientation? 

(3) What orientation relationships exist between nuclei and matrices? 

Questions No.1 addresses nucleation potentials and thus nucleation densities which determine the 
average recrystallized grain size. Question No.2 and 3 address crystallographic orientation 
relationships and thus the formation of texture. Furthermore question No.3 may shed light on 
potential nucleation mechanisms. The latter is critically needed in recrystallization modeling in which 
proper nucleation mechanisms are rarely included and it is generally assumed that nuclei have 
random orientations or orientations as deformed microstructures [14]. 

In the present work, the above 3 questions are studied for nucleation of a lightly cold rolled, coarse 
grained pure aluminum sample further deformed locally by a large number of Vickers hardness 
indentations in each grain. 

 

2 Experimental 

A polycrystalline aluminum sheet of 99.996% purity with a size of 94 × 46 × 3 mm3 was used.  The 
initial average grain diameter was ≈300 µm. This grain size was too fine for the planned experiment in 
which several hardness indentations with sizes of 160 µm -190 µm along the diagonal lines have to be 
done within each grain to study possible grain orientation effects on nucleation potentials. Therefore 
the sheet was ground to 4000# SiC paper and electro-polished, followed by annealing at 863 K (600 ℃) 
for 7 days. The grain sizes after this annealing were in the range from 500 µm to 7 mm, which is ideal 
for the present experiment. Then the sheet was cold rolled 12% in two passes, each with the geometric 
parameter 𝑙𝑙/ℎ around 2, where 𝑙𝑙 is the contact length between the rolls and the sample and ℎ is the 
average sample thickness before and after each pass; thus the deformation is expected to be relatively 
homogeneous through the sample thickness [15]. This light rolling ensures that nuclei forming at 
indentations can grow to a decent size outside the indented zone, easing the detection and analysis. 
Next, 6 samples sized 6.0 × 4.0 × 1.3 mm3 were prepared from the sheet. In total, 13 large grains with 
different orientations (marked A to M) were selected in these samples. Each sample was ground and 
electro-polished with extreme care to remove surface imperfections, especially scratches, to avoid 
nucleation from such sites. All samples were kept in a freezer when not in use. 

Hardness indentations were done on all samples on the RD-TD plane using a Vickers diamond indenter 
of pyramidal shape, with a square base and an angle of 136° between opposite faces, using a force of 
500 g. All the indentations were positioned far away from grain boundaries and the distance between 
two indentations was larger than 3𝑑𝑑, where 𝑑𝑑 is the length of the diagonal lines of the indentations, 
thereby avoiding overlap of deformation zones.  

Electron channeling contrast (ECC) was used to measure the length of the diagonal lines of the 
indentations, and the hardness HV (Kgf/mm2) was calculated as: 

𝐻𝐻𝐻𝐻 = 2𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠 136°
2

/ �𝑑𝑑1+𝑑𝑑2
2

�
2

.    (1) 

𝐹𝐹 is the force of hardness test, and  𝑑𝑑1 and  𝑑𝑑2 are the length of the two diagonal lines.  
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Before annealing, the deformation microstructure of each grain far away from the indentations was 
characterized by EBSD using a Zeiss Supra 35 thermal field emission gun scanning electron 
microscope (FEG-SEM). Five samples containing the selected 13 grains (grains B-M plus approximately 
½ of grain A) were annealed at 583 K (310 ℃) for 1 hour.  The samples were wrapped in baking paper 
before annealing to avoid scratches during sample handling. After annealing, the area around each 
indentation was characterized by EBSD to measure the orientations of nuclei and the recovered matrix 
around them. This was done at the sample surfaces. Whereas the EBSD measurements clearly reveal 
nuclei at the sample surfaces, nuclei which have formed below the surfaces (for example near tips) but 
not yet grown very large, cannot be detected by this method. Therefore ECC was used to observe if 
there were small nuclei ‘inside the indentations’.  

Orientation relationships between nuclei and surrounding recovered matrix as well as between nuclei 
from the same grain were analyzed based on EBSD maps. It should be noted that twins within a 
nucleus are not counted as separate nuclei here. If two neighboring nuclei are twin related to each 
other and one of them has special relationships to the deformed matrix, such as misorientation angles 
below 15°,  40°<111> or 60°<111>, this one is considered as a nucleus while the other one is not. If 
both of them have no special relationships to deformed matrix, the one with the larger size is counted 
as a nucleus.  

The sixth sample containing half of grain A was cut into 2 parts (along the rolling plane into a top and a 
bottom part). Indentations were done on both the top and bottom part as described above. The top 
part was used for serial sectioning to characterize the deformation microstructure underneath the 
indentations and the bottom part for annealing at 583 K (310 ℃) for 2 minutes only. The serial 
sectioning was done by repeated grinding, mechanical polishing and EBSD measurements. The sample 
annealed for 2 minutes was ground and electro-polished to a section near the indentation tips, 
followed by EBSD characterization.  

3 Results  

3.1 Nucleation potentials at indentations in grains of different orientations 

The average orientation and the orientation spread within the deformation microstructures far away 
from the indentations of each grain were calculated from the EBSD data and the values are reported in 
table 1. Most grains contained extended planar dislocation boundaries, while some grains only 
revealed cell structures. Examples of grains with dislocation boundaries and with a cell structure are 
shown in figure 1. These observations agree well with previous observations in polycrystalline 
aluminum cold rolled to a low strain [16-18].  

In total 108 hardness indentations were made in the 13 grains and 37 of them in 8 grains were 
observed to stimulate nucleation. Most of the ‘nucleating indentations’ stimulated one nucleus, while 9 
indentations stimulated 2 nuclei. No nuclei were detected away from the indentations, which is in 
good agreement with previous investigations [e.g. 10, 17]. Table 1 gives an overview of the nucleation 
observed within all the 13 grains. 

3.2 Orientation relationships between nuclei formed at different hardness indentations within each 
grain 
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The nuclei formed within each grain were analyzed to investigate possible orientation relationships 
between the nuclei. This was only relevant for grain A, C, H, I and F that stimulated at least 6 nuclei 
(see table 1). The nuclei within grain A, C and I were scattered but still far from random. As an example, 
the orientations of all nuclei observed in grain A are shown in figure 2a. The orientations of the nuclei 
in grain F and H appeared to be less scattered (see figure 2b), but this may be an effect of statistics.  
When comparing the pole figures in figure 2, it is clear that the orientation distributions are different; 
i.e. grains with different orientations appear to give nuclei with different orientations. 

3.3 Orientation relationships between nuclei and matrix 

The microstructures around the nuclei were characterized using EBSD and the orientation 
relationships between the nuclei and the surrounding matrix were analyzed. In total, 24 (53%) nuclei 
were surrounded partly by low angle boundaries (LABs) below 15°. The other 21 nuclei (47%) were 
surrounded only by high angle boundaries (HABs) and17 of these had a common rotation axis near a 
˂100> axis, 3 near a ˂111> axis, while one was rotated around a ˂120> axis. 

These results were obtained at the surface of samples for nuclei which all have grown to fairly large 
sizes. According to our previous preliminary results, nuclei might form near indentation tips [17]. It is, 
thus, likely that the nuclei analyzed above formed below the surface and grew to be visible at the 
surface. To investigate this, the bottom half of sample 6 (containing grain A) was annealed at 583 K 
(310 ℃) for 2 minutes to explore where the nuclei formed and what orientations they had.   

By using ECC, 4 small nuclei (to be called 2-minutes nuclei) numbered n1, n2a, n2b and n3 (the 
numbers represent the indentation  number, and the lower case n is used to signal that these nuclei 
developed after the short annealing time as opposed to the capital N for the long annealing time), were 
observed at 3 indentations as shown in figure 3. All the nuclei were about 30 µm in diameter, which 
was much smaller than the size of the indentations and they were all located near the indentation tips 
as shown in figure 3a, c and e. Therefore, the sample was ground and electro-polished to reveal areas 
near the indentation tips, and then the orientations of the nuclei and the surrounding recovered 
matrix were examined using EBSD as shown in figure 3b, d and f.  

It is found that all the four nuclei formed both LABs and HABs to the recovered matrix. This is in 
contrast to the surface observations of the 1-hour nuclei  (53% of them are surrounded by HABs only).  
To compare the two cases, the orientations of all the 1-hour and 2-minutes nuclei were plotted 
together in a pole figure shown in figure 2a. It reveals that nucleus n3 had an orientation similar to 
nuclei N9 and N18. Although the orientations of nuclei n1, n2a and n2b were not the same as any 1-
hour nuclei, their misorientation angles with nucleus N18 were still relatively small. It is therefore 
likely that the 1-hour nuclei also formed with orientations similar to the matrix at sites near the 
indentation tips. This hypothesis was tested by looking at orientation relationships between the 2-
minutes nuclei and the matrix far away from them ― corresponding to the misorientation 
relationships that would be observed if they had been annealed to grow to sizes as large as the 1-hour 
nuclei. In the EBSD maps of figure 3, the color of each pixel is defined by its angular orientation 
deviation from the nucleus. It can be observed that the misorientation angles between nucleus n1 and 
the recovered matrix 80 µm away from it were lower than 15° (green in figure 3b).Therefore, it can be 
expected that when nucleus n1 grows into a size of about 160 µm, the nucleus will be surrounded by 
LABs. This is similar to nucleus N17. On the other hand, the nuclei n2a, n2b and n3 in figure 3d and f 
will form only HABs to the surrounding matrix when they have grown to a size similar to the 1-hour 
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nuclei. These results thus support the hypothesis that the 1-hour nuclei form near the indentation tips 
with orientations already present there. 

4 Discussion 

4.1 Nucleation at hardness indents  

In undeformed materials it is well known that the hardness depends on the crystallographic 
orientations of the grains [19], and that areas near grain boundaries may differ from grain interiors 
[e.g. 20]. In the present work, a weakly rolled sample is investigated. The hardness will therefore not 
only depend on the initial grain orientations, but also on the rolled microstructures. Such 
microstructures are known to be subdivided by deformation induced extended dislocation boundaries 
as well as cells. Misorientations across the geometrically necessary dislocation boundaries are 
generally higher than those across incidental cell boundaries [21]. On the micrometer scale the 
microstructure is therefore inhomogeneous and varies from place to place. The rolled microstructure 
is also determined by the initial grain orientations, so although the general principles of subdivision 
are the same, the deformation microstructures vary from grain to grain too [18, 22, 23].  

In other words, the initial grain orientations determine the rolled microstructures and are expected to 
affect the hardness. For the present 13 grains this is validated by relating the measured hardness to 
the energy stored in the rolled deformation microstructures far away from indentations calculated 
based on the measured misorientations ≥ 2° across dislocation boundaries using the method described 
in [24]. As illustrated in figure 4, the grains with higher stored energies, as expected have higher 
hardness values. The scatter in hardness (expressed as error bars in figure 4) within each grain is 
likely to be a consequence of the rolling and thus the local variations within the grains. The figure 
reveals that grains with similar stored energies, e.g. grain B and D, can have very significantly different 
hardness, which is likely to be a grain orientation effect.  

The stored energy in the deformed matrix is known to provide the driving force for nucleation and 
growth during recrystallization. As shown above it is relatively straightforward to determine the 
stored energy at locations far away from the indentations. At the indentations the energies cannot be 
estimated using 2D measurements because of the complicated 3D deformation volumes underneath 
indentations. Generally one may assume, however, that a large indentation (small hardness value) 
means that the local volume under the indentation is in a state favorable for the indenting deformation, 
which in turn may lead to relative lower dislocation densities and thus lower stored energies at that 
site. Based on this assumption, the average hardness value of each grain is related to the 
corresponding nucleation probability (see figure 5a). The curve has a large scatter, but the general 
trend is that the nucleation potential increases with increasing hardness values. To further investigate 
the possible relationship between hardness and nucleation potentials, figure 5b shows the nucleation 
percentages at all the hardness indentations The figure reveals a clear tendency that indentations with 
higher hardness stimulate more nuclei and vice versa.  

The detailed analysis of grain A, suggests that the nuclei develop preferentially at sites near the 
indentation tips (see figure 3). This may be explained by the distribution of stored energies around the 
indentation. The unannealed top half of sample 6 with grain A was sectioned to reveal the deformation 
microstructures at different depths of a volume near a hardness indent (see figure 6). It is evident that 
the spacing of the dislocation boundaries within the indentation zone is smallest at the section close 
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the indentation tip (figure 6d), and that more HABs form there – i.e. the stored energy is higher in the 
section close to the tip than at other sections. Furthermore in the tip section, the stored energy is 
highest at the tip center and decreases with increasing distance (see figure 7).This observed 
distribution of stored energy agrees with a model developed by Nix and Gao [25] and Swadener’s 
results [26]. Nucleation would be facilitated by locally high stored energy as well as by a gradient in 
stored energy. The latter would mean that the preferential nucleation site is at the maximum stored 
energy and the growth of a nucleus formed here will not be hindered by impingements with other 
nuclei because fewer or no nuclei will form in the neighbouring regions of lower stored energy. This 
agrees well with the present observations and analysis, that the nucleation potential is higher for 
higher hardness (see figure 5), and the indentation tip is the preferred nucleation site. The present 
samples were cold rolled before indenting and it therefore cannot be excluded that the local 
microstructures developed during rolling have an influence on the nucleation potentials at the 
indentations. Table 1 indicates that deformed microstructures with extended planar dislocation 
boundaries (EPB) may have a better chance to stimulate nucleation than those with a cell structure 
(CS).   

4.2 Orientation relationships  

For all the investigated grains the nuclei are observed near the hardness indentations, and even 
though the nuclei form at different hardness indentations within a given grain, their orientations are 
related - in the sense that they are within limited orientation distributions and not randomly scattered.  
It is thus very likely that the orientations of the nuclei are related to the matrix in which they form. As 
discussed above the indentation tips appear to be the most potential sites with the highest stored 
energy (see figure 7). This is in agreement with the detailed TEM investigations near Vickers 
indentation tips which revealed severe deformation at the tips and along the diagonal lines [12]. Upon 
annealing big subgrains preferentially developed within these severely deformed regions [12]. In the 
present work the short time annealing revealed nuclei only near the indentation tip. It is thus of 
interest to evaluate possible correlations between the orientations of the nuclei and the orientations 
present at the tips and along the diagonal lines. This can for the present data be done for grain A. 

For this analysis, the area near the indentation tip is divided into 4 parts: I, II, III and IV (see figure 8a). 
The orientations here and the orientations of all 1-hour and 2-minutes nuclei found in grain A are 
plotted in <100> pole figures (see figure 8b-e). The figures reveal that the 4 parts I-IV have somewhat 
different orientations. It may seem odd that the 4 parts in a symmetrical Vickers diamond indentation 
lead to somewhat different crystallographic orientations and, as shall be discussed below, to different 
stored energies in the 4 parts of the deformation microstructure near the tip of the indented zone. Two 
factors are important here: ① the orientation of grain A is {3-1-1}˂215˃, which means that the 4 sides 
of the indenter push against different orientations and the 4 sides are therefore deformed with forces of 
different directions. The indenter strain direction will thus be different in the 4 parts and shift the 
crystallographic orientations in different directions. ② the sample was cold rolled 12% before the 
indentation so local variations due to this rolling deformation will be present in the microstructure [24].  

Figure 8b-e clearly reveals that the orientations of most of the nuclei are found within the orientation 
spread of region I and IV, and a few at  the outskirts of the orientation spread of region III. Following 
the idea above concerning relationship between nucleation potentials and local stored energies, the 
stored energy within the I-IV regions are calculated. The results are 0.14 MJ/m3, 0.04 MJ/m3, 0.16 
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MJ/m3, and 0.23 MJ/m3 within the four regions, respectively. The stored energy of region II is very low 
and no nuclei form there. Region I, III and IV have higher stored energy. Many nuclei have orientations 
as inregion I and IV and are thus likely to have formed there, while fewer in region III. By comparing 
the microstructures within regions I, III, IV (see figure 8a), it is clear that I and IV have banded 
structures with alternating orientations while region III appears more homogeneous. It is thus 
suggested that not only the stored energy but also the morphology of the deformation microstructure 
affect the nucleation potentials. 

The mechanism(s) leading to nucleation cannot directly be quantified from the present work. However 
as the nuclei appear to have orientations very similar to those present at the active nucleation sites, 
conventional mechanisms such as coalescence [27], strain induced boundary migration (SIBM) [28, 29] 
and subgrain growth [30-32] could explain the results. It should be noted that as no original grain 
boundaries are present near the nuclei, the SIBM mechanism should here refer to strain induced 
dislocation boundary migration. 

Most of the nuclei characterized in the present work have grown to quite large sizes. It can therefore 
not be ruled out that possible preferential growth might have affected our results. For the present 
nuclei, it is however observed that the majority have a nearer 30° <100> than e.g. a 40° <111> 
misorientation relationship to the matrix. As the 30° <100> misorientation is not expected to lead to 
fast boundary migration, preferential growth is not expected to be of major concern for the present 
results. 

5. Conclusions 

The nucleation in weakly rolled aluminum further deformed locally by well distributed hardness 
indentations has been investigated. Thirteen big grains each with several hardness indentations were 
characterized after annealing leading to nucleation of recrystallization. It can be concluded that: 

1. All nuclei were observed at the hardness indentations, which is expected as the stored energy 
here is significantly higher than in the surrounding rolled matrix microstructures. 

2. Hardness indentations in only 8 of the 13 investigated grains were observed to stimulate 
nucleation. The general trend is that grains with higher hardness values are more prone to 
stimulate nucleation than those with lower hardness values. As the  orientations of the grains 
are known to determine the evolution of the deformation microstructure after e.g. rolling, 
orientations are also very likely to affect the more complex deformation microstructures 
underneath hardness indentations, and higher hardness values may lead to higher dislocation 
densities and thus higher stored energies stimulating the nucleation. For the present samples, 
which are rolled before indentation, it is suggested that besides the local stored energies also 
the morphology of the deformation microstructures may affect the potential for nucleation. 

3. The orientations of the nuclei from different indentations in a given grain are observed not to 
be randomly distributed, but clustered in limited orientational spaces. The nuclei orientations 
are related to the orientations present in the complex deformed matrices near the tips of the 
indentations. Nucleation by mechanisms such as subgrain coalescence, strain induced 
dislocation boundary migration or subgrain growth could thus lead to nuclei with orientations 
as those observed in the present work.  

4. When only inspected on the surface, most of the nuclei are observed to have large 
misorientations to the matrix, although they have orientations similar to the matrix below the 

7 

 



surface. This underlines the importance of careful 3D or even better 4D (x,y,z,t) experimental 
investigations of nucleation in samples as the present ones. 
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Figure and table captions: 
 
Figure 1 The deformation microstructures far away from indentations of (a) grain A and (b) grain E. 
The color of each pixel in the maps is given by the orientation deviation (misorientation axis) from the 
average orientation of this map (see the insert for color explanation). 
 
Figure 2 (a) The orientation distribution of all nuclei developed near indentations in grain A in the 
samples annealed for 1 h and for 2 minutes. The 2-minutes nuclei will be described in section 3.3. The 
number refers to the indentation number. The black and red markers represent the 1-hour and the 2-
minutes nuclei, respectively. (b) Orientation distributions of the nuclei formed in grain F.  
 
Figure 3 ECC images (a), (c) and (e) and EBSD orientation maps (b), (d), and (f) of four nuclei formed 
at the tips of indentations in grain A after annealing at 583 K for 2 minutes. The nuclei are marked by 
red circles and arrows in the ECC images and orientation maps, respectively. In the orientation maps, 
the white lines represent LABs (≥ 2° and < 15°), while the black lines represent HABs (≥ 15°). The 
color of each pixel in (b), (c) and (d) is defined by its orientation deviation (angular deviation) from 
the orientations of the nuclei n1, n2a and n3, respectively (seen as blue grains); see the insert in (f) for 
color explanation. 
 
Figure 4 The hardness values of all 13  grains as a function of the stored energy  in the rolled 
microstructures far away from indentations measured at the sample surface. 

Figure 5 (a) The nucleation potential expressed in percentages for the 13 grains as a function of the 
average hardness values. (b) The nucleation frequency of indentations as a function of hardness values. 
It includes all hardness indentations in the 13 grains. 

Figure 6 The deformation microstructures at an indentation in grain A at different depth underneath 
the sample surface: (a) 0 µm (sample surface), (b) 9 µm, (c) 24 µm and (d) 28 µm (at the tip of the 
indentation). The color of each pixel in the orientation maps is defined by the crystallographic 
orientations along the sample normal direction, LABs (2–15°) and HABs are shown by thin white and 
thick black lines, respectively. In (d) the deformation microstructure is divided into regions, marked as 
Ri, (i=1-5), within which the stored energy is calculated and shown in figure 7.  

 
Figure 7 Stored energies of the areas shown in figure 6d as a function of the distance away from the 
indentation tip. 

Figure 8 (a) EBSD maps of the deformation microstructure near the tip of an indentation in grain A 
showing four regions. (b)-(e) show {100} pole figures of all the 1-hour and 2-minutes nuclei together 
with the orientation within the 4 regions in (a). 

Table 1 Overview of the nucleation behavior of the 13 grains investigated. The hardness is averaged 
over all indentations in that grain and the nucleation potentials are given as indentations leading to 
nucleation (in number and pct.). The data refer to surface observations. EPB and CS are used to 
describe the deformation microstructures far from the indentations and are short for extended planar 
boundary microstructures and cell microstructures. 
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