195,710 research outputs found
High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase
In this paper the evolution of a quantum system drived by a non-Hermitian
Hamiltonian depending on slowly-changing parameters is studied by building an
universal high-order adiabatic approximation(HOAA) method with Berry's phase
,which is valid for either the Hermitian or the non-Hermitian cases. This
method can be regarded as a non-trivial generalization of the HOAA method for
closed quantum system presented by this author before. In a general situation,
the probabilities of adiabatic decay and non-adiabatic transitions are
explicitly obtained for the evolution of the non-Hermitian quantum system. It
is also shown that the non-Hermitian analog of the Berry's phase factor for the
non-Hermitian case just enjoys the holonomy structure of the dual linear bundle
over the parameter manifold. The non-Hermitian evolution of the generalized
forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page
Phonon anomalies in pure and underdoped R{1-x}K{x}Fe{2}As{2} (R = Ba, Sr) investigated by Raman light scattering
We present a detailed temperature dependent Raman light scattering study of
optical phonons in Ba{1-x}K{x}Fe{2}As{2} (x ~ 0.28, superconducting Tc ~ 29 K),
Sr{1-x}K{x}Fe{2}As{2} (x ~ 0.15, Tc ~ 29 K) and non-superconducting
BaFe{2}As{2} single crystals. In all samples we observe a strong continuous
narrowing of the Raman-active Fe and As vibrations upon cooling below the
spin-density-wave transition Ts. We attribute this effect to the opening of the
spin-density-wave gap. The electron-phonon linewidths inferred from these data
greatly exceed the predictions of ab-initio density functional calculations
without spin polarization, which may imply that local magnetic moments survive
well above Ts. A first-order structural transition accompanying the
spin-density-wave transition induces discontinuous jumps in the phonon
frequencies. These anomalies are increasingly suppressed for higher potassium
concentrations. We also observe subtle phonon anomalies at the superconducting
transition temperature Tc, with a behavior qualitatively similar to that in the
cuprate superconductors.Comment: 5 pages, 6 figures, accepted versio
Hierarchical incremental class learning with reduced pattern training
Hierarchical Incremental Class Learning (HICL) is a new task decomposition method that addresses the pattern classification problem. HICL is proven to be a good classifier but closer examination reveals areas for potential improvement. This paper proposes a theoretical model to evaluate the performance of HICL and presents an approach to improve the classification accuracy of HICL by applying the concept of Reduced Pattern Training (RPT). The theoretical analysis shows that HICL can achieve better classification accuracy than Output Parallelism [1]. The procedure for RPT is described and compared with the original training procedure. RPT reduces systematically the size of the training data set based on the order of sub-networks built. The results from four benchmark classification problems show much promise for the improved model
The spin-polarized state of graphene: a spin superconductor
We study the spin-polarized Landau-level state of graphene. Due to
the electron-hole attractive interaction, electrons and holes can bound into
pairs. These pairs can then condense into a spin-triplet superfluid ground
state: a spin superconductor state. In this state, a gap opens up in the edge
bands as well as in the bulk bands, thus it is a charge insulator, but it can
carry the spin current without dissipation. These results can well explain the
insulating behavior of the spin-polarized state in the recent
experiments.Comment: 6 pages, 4 figure
Calculation of turbulent shear stress in supersonic boundary layer flows
An analysis of turbulent boundary layer flow characteristics and the computational procedure used are discussed. The integrated mass and momentum flux profiles and differentials of the integral quantities are used in the computations so that local evaluation of the streamwise velocity gradient is not necessary. The computed results are compared with measured shear stress data obtained by using hot wire anemometer and laser velocimeter techniques. The flow measurements were made upstream and downstream of an adiabatic unseparated interaction of an oblique shock wave with the turbulent boundary layer on the flat wall of a two dimensional wind tunnel. A comparison of the numerical analysis and actual measurements is made and the effects of small differences in mean flow profiles on the computed shear stress distributions are discussed
- …
