77 research outputs found

    Cognitive-postural multitasking training in older adults: Effects of input-output modality mappings on cognitive performance and postural control

    Get PDF
    Older adults exhibit impaired cognitive and balance performance, particularly under multi-task conditions, which can be improved through training. Compatibility of modality mappings in cognitive tasks (i.e., match between stimulus modality and anticipated sensory effects of motor responses), modulates physical and cognitive dual-task costs. However, the effects of modality specific training programs have not been evaluated yet. Here, we tested the effects of cognitive-postural multi-tasking training on the ability to coordinate task mappings under high postural demands in healthy older adults. Twenty-one adults aged 65-85 years were assigned to one of two groups. While group 1 performed cognitive-postural triple-task training with compatible modality mappings (i.e., visual-manual and auditory-vocal dual n-back tasks), group 2 performed the same tasks with incompatible modality mappings (i.e., visual-vocal and auditory-manual n-back tasks). Throughout the 6-weeks balance training intervention, working-memory load was gradually increased while base-of-support was reduced. Before training (T0), after a 6-week passive control period (T1), and immediately after the intervention (T2), participants performed spatial dual one-back tasks in semi-tandem stance position. Our results indicate improved working-memory performance and reduced dual-task costs for both groups after the passive control period, but no training-specific performance gains. Furthermore, balance performance did not improve in response to training. Notably, the cohort demonstrated meaningful interindividual variability in training responses. Our findings raise questions about practice effects and age-related heterogeneity of training responses following cognitive-motor training. Following multi-modal balance training, neither compatible nor incompatible modality mappings had an impact on the observed outcomes

    The role of response modalities in cognitive task representations

    Get PDF
    The execution of a task necessitates the use of a specific response modality. We examined the role of different response modalities by using a task-switching paradigm. In Experiment 1, subjects switched between two numerical judgments, whereas response modality (vocal vs. manual vs. foot responses) was manipulated between groups. We found judgment-shift costs in each group, that is irrespective of the response modality. In Experiment 2, subjects switched between response modalities (vocal vs. manual, vocal vs. foot, or manual vs. foot). We observed response-modality shift costs that were comparable in all groups. In sum, the experiments suggest that the response modality (combination) does not affect switching per se. Yet, modality-shift costs occur when subjects switch between response modalities. Thus, we suppose that modality-shift costs are not due to a purely motor-related mechanisms but rather emerge from a general switching process. Consequently, the response modality has to be considered as a cognitive component in models of task switching

    Competing Neural Responses for Auditory and Visual Decisions

    Get PDF
    Why is it hard to divide attention between dissimilar activities, such as reading and listening to a conversation? We used functional magnetic resonance imaging (fMRI) to study interference between simple auditory and visual decisions, independently of motor competition. Overlapping activity for auditory and visual tasks performed in isolation was found in lateral prefrontal regions, middle temporal cortex and parietal cortex. When the visual stimulus occurred during the processing of the tone, its activation in prefrontal and middle temporal cortex was suppressed. Additionally, reduced activity was seen in modality-specific visual cortex. These results paralleled impaired awareness of the visual event. Even without competing motor responses, a simple auditory decision interferes with visual processing on different neural levels, including prefrontal cortex, middle temporal cortex and visual regions

    Pharmacological Fingerprints of Contextual Uncertainty

    Get PDF
    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. \ua9 2016 Marshall et al

    Statistical Epistasis and Functional Brain Imaging Support a Role of Voltage-Gated Potassium Channels in Human Memory

    Get PDF
    Despite the current progress in high-throughput, dense genome scans, a major portion of complex traits' heritability still remains unexplained, a phenomenon commonly termed “missing heritability.” The negligence of analytical approaches accounting for gene-gene interaction effects, such as statistical epistasis, is probably central to this phenomenon. Here we performed a comprehensive two-way SNP interaction analysis of human episodic memory, which is a heritable complex trait, and focused on 120 genes known to show differential, memory-related expression patterns in rat hippocampus. Functional magnetic resonance imaging was also used to capture genotype-dependent differences in memory-related brain activity. A significant, episodic memory-related interaction between two markers located in potassium channel genes (KCNB2 and KCNH5) was observed (Pnominal combined = 0.000001). The epistatic interaction was robust, as it was significant in a screening (Pnominal = 0.0000012) and in a replication sample (Pnominal = 0.01). Finally, we found genotype-dependent activity differences in the parahippocampal gyrus (Pnominal = 0.001) supporting the behavioral genetics finding. Our results demonstrate the importance of analytical approaches that go beyond single marker statistics of complex traits

    Trait anxiety modulates the neural efficiency of inhibitory control

    Get PDF
    Contains fulltext : 99843-OA.pdf (publisher's version ) (Open Access)n impairment of attentional control in the face of threat-related distracters is well established for high-anxious individuals. Beyond that, it has been hypothesized that high trait anxiety more generally impairs the neural efficiency of cognitive processes requiring attentional control—even in the absence of threat-related stimuli. Here, we use fMRI to show that trait anxiety indeed modulates brain activation and functional connectivities between task-relevant brain regions in an affectively neutral Stroop task. In high-anxious individuals, dorsolateral pFC showed stronger task-related activation and reduced coupling with posterior lateral frontal regions, dorsal ACC, and a word-sensitive area in the left fusiform gyrus. These results support the assumption that a general (i.e., not threat-specific) impairment of attentional control leads to reduced neural processing efficiency in anxious individuals. The increased dorsolateral pFC activation is interpreted as an attempt to compensate for suboptimal connectivity within the cortical network subserving task performance.14 p
    corecore