128 research outputs found

    Mosquitoes as Potential Bridge Vectors of Malaria Parasites from Non-Human Primates to Humans

    Get PDF
    Malaria is caused by Plasmodium parasites which are transmitted by mosquitoes. Until recently, human malaria was considered to be caused by human-specific Plasmodium species. Studies on Plasmodium parasites in non-human primates (NHPs), however, have identified parasite species in gorillas and chimpanzees that are closely related to human Plasmodium species. Moreover, P. knowlesi, long known as a parasite of monkeys, frequently infects humans. The requirements for such a cross-species exchange and especially the role of mosquitoes in this process are discussed, as the latter may act as bridge vectors of Plasmodium species between different primates. Little is known about the mosquito species that would bite both humans and NHPs and if so, whether humans and NHPs share the same Plasmodium vectors. To understand the vector-host interactions that can lead to an increased Plasmodium transmission between species, studies are required that reveal the nature of these interactions. Studying the potential role of NHPs as a Plasmodium reservoir for humans will contribute to the ongoing efforts of human malaria elimination, and will help to focus on critical areas that should be considered in achieving this goal

    Field Testing of Different Chemical Combinations as Odour Baits for Trapping Wild Mosquitoes in The Gambia

    Get PDF
    Odour baited traps have potential use in population surveillance of insect vectors of disease, and in some cases for vector population reduction. Established attractants for human host-seeking mosquitoes include a combination of CO2 with L-lactic acid and ammonia, on top of which additional candidate compounds are being tested. In this field study in rural Gambia, using Latin square experiments with thorough randomization and replication, we tested nine different leading candidate combinations of chemical odorants for attractiveness to wild mosquitoes including anthropophilic malaria vectors, using modified Mosquito Magnet-X (MM-X) counterflow traps outside experimental huts containing male human sleepers. Highest catches of female mosquitoes, particularly of An. gambiae s.l. and Mansonia species, were obtained by incorporation of tetradecanoic acid. As additional carboxylic acids did not increase the trap catches further, this ‘reference blend’ (tetradecanoic acid with L-lactic acid, ammonia and CO2) was used in subsequent experiments. MM-X traps with this blend caught similar numbers of An. gambiae s.l. and slightly more Mansonia and Culex mosquitoes than a standard CDC light trap, and these numbers were not significantly affected by the presence or absence of human sleepers in the huts. Experiments with CO2 produced from overnight yeast cultures showed that this organic source was effective in enabling trap attractiveness for all mosquito species, although at a slightly lower efficiency than obtained with use of CO2 gas cylinders. Although further studies are needed to discover additional chemicals that increase attractiveness, as well as to optimise trap design and CO2 source for broader practical use, the odour-baited traps described here are safe and effective for sampling host-seeking mosquitoes outdoors and can be incorporated into studies of malaria vector ecology

    Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae

    Get PDF
    BACKGROUND: Current intra-domiciliary vector control depends on the application of residual insecticides and/or repellents. Although biological control agents have been developed against aquatic mosquito stages, none are available for adults. Following successful use of an entomopathogenic fungus against tsetse flies (Diptera: Glossinidae) we investigated the potency of this fungus as a biological control agent for adult malaria and filariasis vector mosquitoes. METHODS: In the laboratory, both sexes of Anopheles gambiae sensu stricto and Culex quinquefasciatus were passively contaminated with dry conidia of Metarhizium anisopliae. Pathogenicity of this fungus for An. gambiae was further tested for varying exposure times and different doses of oil-formulated conidia. RESULTS: Comparison of Gompertz survival curves and LT(50 )values for treated and untreated specimens showed that, for both species, infected mosquitoes died significantly earlier (p < 0.0001) than uninfected control groups. No differences in LT(50 )values were found for different exposure times (24, 48 hrs or continuous exposure) of An. gambiae to dry conidia. Exposure to oil-formulated conidia (doses ranging from 1.6 × 10(7 )to 1.6 × 10(10 )conidia/m(2)) gave LT(50 )values of 9.69 ± 1.24 (lowest dose) to 5.89 ± 0.35 days (highest dose), with infection percentages ranging from 4.4–83.7%. CONCLUSION: Our study marks the first to use an entomopathogenic fungus against adult Afrotropical disease vectors. Given its high pathogenicity for both adult Anopheles and Culex mosquitoes we recommend development of novel targeted indoor application methods for the control of endophagic host-seeking females

    Field testing of different chemical combinations as odour baits for trapping wild mosquitoes in The Gambia.

    Get PDF
    Odour baited traps have potential use in population surveillance of insect vectors of disease, and in some cases for vector population reduction. Established attractants for human host-seeking mosquitoes include a combination of CO(2) with L-lactic acid and ammonia, on top of which additional candidate compounds are being tested. In this field study in rural Gambia, using Latin square experiments with thorough randomization and replication, we tested nine different leading candidate combinations of chemical odorants for attractiveness to wild mosquitoes including anthropophilic malaria vectors, using modified Mosquito Magnet-X (MM-X) counterflow traps outside experimental huts containing male human sleepers. Highest catches of female mosquitoes, particularly of An. gambiae s.l. and Mansonia species, were obtained by incorporation of tetradecanoic acid. As additional carboxylic acids did not increase the trap catches further, this 'reference blend' (tetradecanoic acid with L-lactic acid, ammonia and CO(2)) was used in subsequent experiments. MM-X traps with this blend caught similar numbers of An. gambiae s.l. and slightly more Mansonia and Culex mosquitoes than a standard CDC light trap, and these numbers were not significantly affected by the presence or absence of human sleepers in the huts. Experiments with CO(2) produced from overnight yeast cultures showed that this organic source was effective in enabling trap attractiveness for all mosquito species, although at a slightly lower efficiency than obtained with use of CO(2) gas cylinders. Although further studies are needed to discover additional chemicals that increase attractiveness, as well as to optimise trap design and CO(2) source for broader practical use, the odour-baited traps described here are safe and effective for sampling host-seeking mosquitoes outdoors and can be incorporated into studies of malaria vector ecology

    A Novel Synthetic Odorant Blend for Trapping of Malaria and Other African Mosquito Species

    Get PDF
    Estimating the biting fraction of mosquitoes is of critical importance for risk assessment of malaria transmission. Here, we present a novel odor-based tool that has been rigorously assessed in semi-field assays and traditional African villages for estimating the number of mosquitoes that enter houses in search of a blood meal. A standard synthetic blend (SB) consisting of ammonia, (S)-lactic acid, tetradecanoic acid, and carbon dioxide was complemented with isovaleric acid, 4,5 dimethylthiazole, 2-methyl-1-butanol, and 3-methyl-1-butanol in various combinations and concentrations, and tested for attractiveness to the malaria mosquito Anopheles gambiae. Compounds were released through low density polyethylene (LDPE) material or from nylon strips (nylon). Studies were done in a semi-field facility and two traditional villages in western Kenya. The alcohol 3-methyl-1-butanol significantly increased the attraction of SB. The other compounds proved less effective or inhibitory. Tested in a village, 3-methyl-1-butanol, released from LDPE, increased the attraction of SB. Further studies showed a significantly enhanced attraction of adding 3-methyl-1-butanol to SB compared to previously-published attractive blends both under semi-field and village conditions. Other mosquito species with relevance for public health were collected with this blend in significantly higher numbers as well. These results demonstrate the advent of a novel, reliable odor-based sampling tool for the collection of malaria and other mosquitoes. The advantage of this odor-based tool over existing mosquito sampling tools is its reproducibility, objectiveness, and relatively low cost compared to current standards of CDC light traps or the human landing catch

    Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota

    Get PDF
    Background - Anopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In addition, volatiles produced by human skin bacteria are attractive to this mosquito species. The purpose of the current study was to test the effect of ten compounds present in the headspace of human bacteria on the host-seeking process of A. gambiae. The effect of each of the ten compounds on the attractiveness of a basic blend of ammonia, lactic and tetradecanoic acid to A. gambiae was examined. Methods- The host-seeking response of A. gambiae was evaluated in a laboratory set-up using a dual-port olfactometer and in a semi-field facility in Kenya using MM-X traps. Odorants were released from LDPE sachets and placed inside the olfactometer as well as in the MM-X traps. Carbon dioxide was added in the semi-field experiments, provided from pressurized cylinders or fermenting yeast. Results - The olfactometer and semi-field set-up allowed for high-throughput testing of the compounds in blends and in multiple concentrations. Compounds with an attractive or inhibitory effect were identified in both bioassays. 3-Methyl-1-butanol was the best attractant in both set-ups and increased the attractiveness of the basic blend up to three times. 2-Phenylethanol reduced the attractiveness of the basic blend in both bioassays by more than 50%. Conclusions - Identification of volatiles released by human skin bacteria led to the discovery of compounds that have an impact on the host-seeking behaviour of A. gambiae. 3-Methyl-1-butanol may be used to increase mosquito trap catches, whereas 2-phenylethanol has potential as a spatial repellent. These two compounds could be applied in push-pull strategies to reduce mosquito numbers in malaria endemic areas

    Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae s.s.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon dioxide (CO<sub>2</sub>) plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector <it>Anopheles gambiae sensu stricto </it>is attracted to human volatiles augmented by CO<sub>2</sub>. This study investigated whether CO<sub>2</sub>, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO<sub>2 </sub>derived from fermenting yeast (yeast-produced CO<sub>2</sub>).</p> <p>Methods</p> <p>Trapping experiments were conducted in the laboratory, semi-field and field, with <it>An. gambiae s.s</it>. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO<sub>2</sub>. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO<sub>2 </sub>on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ<sup>2</sup>-test, the field data by GLM. In addition, CO<sub>2 </sub>concentrations produced by yeast-sugar solutions were measured over time.</p> <p>Results</p> <p>Traps baited with yeast-produced CO<sub>2 </sub>caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients) and also significantly more than traps baited with industrial CO<sub>2</sub>, both in the laboratory and semi-field. Adding yeast-produced CO<sub>2 </sub>to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO<sub>2 </sub>+ human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. <it>Anopheles gambiae s.s</it>. was not caught during the field trials. However, traps baited with yeast-produced CO<sub>2 </sub>caught similar numbers of <it>Anopheles arabiensis </it>as traps baited with industrial CO<sub>2</sub>. Addition of human odour increased trap catches.</p> <p>Conclusions</p> <p>Yeast-produced CO<sub>2 </sub>can effectively replace industrial CO<sub>2 </sub>for sampling of <it>An. gambiae s.s</it>.. This will significantly reduce costs and allow sustainable mass-application of odour-baited devices for mosquito sampling in remote areas.</p

    Field Evaluation of Traditionally Used Plant-Based Insect Repellents and Fumigants Against the Malaria Vector Anopheles darlingi in Riberalta, Bolivian Amazon

    Get PDF
    Inexpensive insect repellents may be needed to supplement the use of impregnated bed-nets in the Amazon region, where the primary malaria vector, Anopheles darlingi (Root), is exophilic and feeds in the early evening. Three plants that are traditionally used to repel mosquitoes in Riberalta, Bolivian Amazon, were identified by focus group, and then they were tested against An. darlingi as well as Mansonia indubitans (Dyar & Shannon)/Mansonia titillans (Walker). Cymbopogon citratus (Staph), Guatemalan lemongrass, essential oil at 25% was used as a skin repellent, and it provided 74% protection for 2.5 h against predominantly An. darlingi and 95% protection for 2.5 h against Mansonia spp. Attalea princeps (name not verified) husks, burned on charcoal in the traditional way provided 35 and 51% protection against An. darlingi and Mansonia spp., respectively. Kerosene lamps, often used to light rural homes, were used as a heat source to volatilize 100% Mentha arvensis (Malinv ex. Bailey) essential oil, and they reduced biting by 41% inside traditional homes against Mansonia spp., although they were ineffective outdoors against An. darlingi. All three plant-based repellents provided significant protection compared with controls. Plant-based repellents, although less effective than synthetic alternatives, were shown by focus groups to be more culturally acceptable in this setting, in particular para-menthane-3, 8, idol derived from lemon eucalyptus, Corymbia citriodora (Hook). Plant-based repellents have the potential to be produced locally and therefore sold more cheaply than synthetic commercial repellents. Importantly, their low cost may encourage user compliance among indigenous and marginalized populations
    corecore