1,473 research outputs found

    Particle-in-cell simulations of shock-driven reconnection in relativistic striped winds

    Full text link
    By means of two- and three-dimensional particle-in-cell simulations, we investigate the process of driven magnetic reconnection at the termination shock of relativistic striped flows. In pulsar winds and in magnetar-powered relativistic jets, the flow consists of stripes of alternating magnetic field polarity, separated by current sheets of hot plasma. At the wind termination shock, the flow compresses and the alternating fields annihilate by driven magnetic reconnection. Irrespective of the stripe wavelength "lambda" or the wind magnetization "sigma" (in the regime sigma>>1 of magnetically-dominated flows), shock-driven reconnection transfers all the magnetic energy of alternating fields to the particles, whose average Lorentz factor increases by a factor of sigma with respect to the pre-shock value. In the limit lambda/(r_L*sigma)>>1, where r_L is the relativistic Larmor radius in the wind, the post-shock particle spectrum approaches a flat power-law tail with slope around -1.5, populated by particles accelerated by the reconnection electric field. The presence of a current-aligned "guide" magnetic field suppresses the acceleration of particles only when the guide field is stronger than the alternating component. Our findings place important constraints on the models of non-thermal radiation from Pulsar Wind Nebulae and relativistic jets.Comment: 25 pages, 14 figures, movies available at https://www.cfa.harvard.edu/~lsironi/sironi_movies.tar ; in press, special issue of Computational Science and Discovery on selected research from the 22nd International Conference on Numerical Simulation of Plasma

    Effects of creatine treatment on Jejunal phenotypes in a rat model of acidosis

    Get PDF
    We investigated the effects of creatine treatment on jejunal phenotypes in a rat model of oxidative stress induced by acidosis. In particular, the activities of some antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase, and glutathione reductase), the level of lipid peroxidation, the expression of heat shock proteins (HSP70), and the expression of the major carriers of the cells (Na+/K+-ATPase, sodium-glucose Transporter 1\u2014SGLT1, and glucose transporter 2\u2014GLUT2) were measured under control and chronic acidosis conditions. Creatine did not affect the activity of antioxidant enzymes in either the control or acidosis groups, except for catalase, for which the activity was reduced in both conditions. Creatine did not change the lipid peroxidation level or HSP70 expression. Finally, creatine stimulated (Na+/K+)-ATPase expression under both control and chronic acidosis conditions. Chronic acidosis caused reductions in the expression levels of GLUT2 and SGLT1. GLUT2 reduction was abolished by creatine, while the presence of creatine did not induce any strengthening effect on the expression of SGLT1 in either the control or chronic acidosis groups. These results indicate that creatine has antioxidant properties that are realized through direct interaction of the molecule with reactive oxygen species. Moreover, the administration of creatine seems to determine a functional strengthening of the tissue, making it more resistant to acidosis

    Particle Acceleration in Pulsar Wind Nebulae: PIC modelling

    Full text link
    We discuss the role of particle-in-cell (PIC) simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.Comment: 32 pages, 16 figures, to appear in the book "Modelling Nebulae" edited by D. Torres for Springer, based on the invited contributions to the workshop held in Sant Cugat (Barcelona), June 14-17, 201

    TRIS II: search for CMB spectral distortions at 0.60, 0.82 and 2.5 GHz

    Full text link
    With the TRIS experiment we have performed absolute measurements of the sky brightness in a sky circle at δ=+42\delta = +42^{\circ} at the frequencies ν=\nu = 0.60, 0.82 and 2.5 GHz. In this paper we discuss the techniques used to separate the different contributions to the sky emission and give an evaluation of the absolute temperature of the Cosmic Microwave Background. For the black-body temperature of the CMB we get: Tcmbth=(2.837±0.129±0.066)KT_{cmb}^{th}=(2.837 \pm 0.129 \pm 0.066)K at ν=0.60\nu=0.60 GHz; Tcmbth=(2.803±0.0510.300+0.430)KT_{cmb}^{th}=(2.803 \pm 0.051 ^{+0.430} _{-0.300})K at ν=0.82\nu=0.82 GHz; Tcmbth=(2.516±0.139±0.284)KT_{cmb}^{th}=(2.516 \pm 0.139 \pm 0.284)K at ν=2.5\nu=2.5 GHz. The first error bar is statistic (1σ\sigma) while the second one is systematic. These results represent a significant improvement with respect to the previous measurements. We have also set new limits to the free-free distortions, 6.3×106<Yff<12.6×106 -6.3 \times 10^{-6} < Y_{ff} < 12.6 \times 10^{-6}, and slightly improved the Bose-Einstein upper limit, μ<6×105|\mu| < 6 \times 10^{-5}, both at 95% confidence level.Comment: accepted for publication in The Astrophysical Journa

    First optical validation of a Schwarzschild Couder telescope: the ASTRI SST-2M Cherenkov telescope

    Get PDF
    The Cherenkov Telescope Array (CTA) represents the most advanced facility designed for Cherenkov Astronomy. ASTRI SST-2M has been developed as a demonstrator for the Small Size Telescope in the context of the upcoming CTA. Its main innovation consists in the optical layout which implements the Schwarzschild-Couder configuration and is fully validated for the first time. The ASTRI SST-2M optical system represents the first qualified example for two mirrors telescope for Cherenkov Astronomy. This configuration permits to (i) maintain a high optical quality across a large FoV (ii) de-magnify the plate scale, (iii) exploit new technological solutions for focal plane sensors. The goal of the paper is to present the optical qualification of the ASTRI SST-2M telescope. The qualification has been obtained measuring the PSF sizes generated in the focal plane at various distance from the optical axis. These values have been compared with the performances expected by design. After an introduction on the Gamma Astronomy from the ground, the optical design and how it has been implemented for ASTRI SST-2M is discussed. Moreover the description of the setup used to qualify the telescope over the full field of view is shown. We report the results of the first--light optical qualification. The required specification of a flat PSF of 10\sim 10 arcmin in a large field of view ~10 deg has been demonstrated. These results validate the design specifications, opening a new scenario for Cherenkov Gamma ray Astronomy and, in particular, for the detection of high energy (5 - 300 TeV) gamma rays and wide-field observations with CTA.Comment: 6 pages, 5 figure

    single nucleotide polymorphism discovery in the avian tapasin gene

    Get PDF
    Abstract Tapasin is a transmembrane glycoprotein located in the endoplasmic reticulum. Its function is to assist the assembly of major histocompatibility complex class I molecules. The chicken Tapasin gene includes 8 exons and is localized inside the major histocompatibility complex between the 2 class IIβ genes. The aim of the current study was the estimation of single nucleotide polymorphism frequency within the avian Tapasin gene. The Tapasin gene sequence from exon 5 to exon 6 was amplified for the chicken, turkey, and pheasant, and sequences of different lengths were obtained. The sequence analysis based on PolyBayes identified 25 putative single nucleotide polymorphism sites when the 3 species were compared. The coding sequences were further translated and analyzed to identify amino acid substitutions. The results indicated that polymorphisms within this region of the gene was mainly observed in the heterozygous state. The level of conservation of the Tapasin gene sequence among species is likely to be related to the functional importance of the gene

    Bleaching melanin in formalin-fixed and paraffin-embedded melanoma specimens using visible light : a pilot study

    Get PDF
    In fluorescence microscopy, light radiation can be used to bleach fluorescent molecules in formalin-fixed and paraffin-embedded (FFPE) samples, in order to increase the ratio between signal of interest and background autofluorescence. We tested if the same principle can be exploited in bright field microscopy to bleach pigmented melanoma FFPE sections together with cell morphology maintenance. After dewaxing and rehydration, serial FFPE sections of a feline diffuse iris melanoma, a canine dermal melanoma, a gray horse dermal melanoma and a swine cutaneous melanoma were irradiated with visible light for 1, 2, 3, 4 and 5 days, prior to Hematoxylin and Eosin staining. Complete bleaching was obtained after 1-day treatment in feline and swine melanomas, while 2 and 3 days were required in canine and equine neoplasms, respectively. In all treated samples, cell morphology was maintained. Photo-induced bleaching combined with immunohistochemistry was tested after a 3-day photo-treatment using five different markers. According to the literature, in all samples neoplastic cells stained positive for vimentin, S100 and PNL2, while negative for FVIII and pancytokeratin. In conclusion, visible light can be effectively exploited to bleach pigmented melanoma FFPE sections prior to perform routine histochemical and immunohistochemical stains
    corecore