459 research outputs found

    Nanosecond molecular relaxations in lipid bilayers studied by high energy resolution neutron scattering and in-situ diffraction

    Full text link
    We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine), hydrated with heavy water. Wave vector resolved quasi-elastic neutron scattering (QENS) is used to determine relaxation times τ\tau, which can be associated with different molecular components, i.e., the lipid acyl chains and the interstitial water molecules in the different phases of the model membrane system. The inelastic data are complemented both by energy resolved and energy integrated in-situ diffraction. From a combined analysis of the inelastic data in the energy and time domain, the respective character of the relaxation, i.e., the exponent of the exponential decay is also determined. From this analysis we quantify two relaxation processes. We associate the fast relaxation with translational diffusion of lipid and water molecules while the slow process likely stems from collective dynamics

    Scale-Free topologies and Activatory-Inhibitory interactions

    Full text link
    A simple model of activatory-inhibitory interactions controlling the activity of agents (substrates) through a "saturated response" dynamical rule in a scale-free network is thoroughly studied. After discussing the most remarkable dynamical features of the model, namely fragmentation and multistability, we present a characterization of the temporal (periodic and chaotic) fluctuations of the quasi-stasis asymptotic states of network activity. The double (both structural and dynamical) source of entangled complexity of the system temporal fluctuations, as an important partial aspect of the Correlation Structure-Function problem, is further discussed to the light of the numerical results, with a view on potential applications of these general results.Comment: Revtex style, 12 pages and 12 figures. Enlarged manuscript with major revision and new results incorporated. To appear in Chaos (2006

    Momentum transfer in two-rotor gyrostats

    Full text link

    Laboratory evidence of disseminated intravascular coagulation is associated with a fatal outcome in children with cerebral malaria despite an absence of clinically evident thrombosis or bleeding

    Get PDF
    Background A procoagulant state is implicated in cerebral malaria (CM ) pathogenesis, but whether disseminated intravascular coagulation (DIC ) is present or associated with a fatal outcome is unclear. Objectives To determine the frequency of overt DIC , according to ISTH criteria, in children with fatal and non‐fatal CM . Methods/patients Malawian children were recruited into a prospective cohort study in the following diagnostic groups: retinopathy‐positive CM (n = 140), retinopathy‐negative CM (n = 36), non‐malarial coma (n = 14), uncomplicated malaria (UM ), (n = 91), mild non‐malarial febrile illness (n = 85), and healthy controls (n = 36). Assays in the ISTH DIC criteria were performed, and three fibrin‐related markers, i.e. protein C, antithrombin, and soluble thrombomodulin, were measured. Results and conclusions Data enabling assignment of the presence or absence of ‘overt DIC ’ were available for 98 of 140 children with retinopathy‐positive CM . Overt DIC was present in 19 (19%), and was associated with a fatal outcome (odds ratio [OR] 3.068; 95% confidence interval [CI] 1.085–8.609; P = 0.035]. The levels of the three fibrin‐related markers and soluble thrombomodulin were higher in CM patients than in UM patients (all P < 0.001). The mean fibrin degradation product level was higher in fatal CM patients (71.3 μg mL−1 [95% CI 49.0–93.6]) than in non‐fatal CM patients (48.0 μg mL−1 [95% CI 37.7–58.2]; P = 0.032), but, in multivariate logistic regression, thrombomodulin was the only coagulation‐related marker that was independently associated with a fatal outcome (OR 1.084 for each ng mL−1 increase [95% CI 1.017–1.156]; P = 0.014). Despite these laboratory derangements, no child in the study had clinically evident bleeding or thrombosis. An overt DIC score and high thrombomodulin levels are associated with a fatal outcome in CM , but infrequently indicate a consumptive coagulopathy

    Theoretical and Numerical Analysis of an Optimal Execution Problem with Uncertain Market Impact

    Get PDF
    This paper is a continuation of Ishitani and Kato (2015), in which we derived a continuous-time value function corresponding to an optimal execution problem with uncertain market impact as the limit of a discrete-time value function. Here, we investigate some properties of the derived value function. In particular, we show that the function is continuous and has the semigroup property, which is strongly related to the Hamilton-Jacobi-Bellman quasi-variational inequality. Moreover, we show that noise in market impact causes risk-neutral assessment to underestimate the impact cost. We also study typical examples under a log-linear/quadratic market impact function with Gamma-distributed noise.Comment: 24 pages, 14 figures. Continuation of the paper arXiv:1301.648

    Coarse Bifurcation Diagrams via Microscopic Simulators: A State-Feedback Control-Based Approach

    Full text link
    The arc-length continuation framework is used for the design of state feedback control laws that enable a microscopic simulator trace its own open-loop coarse bifurcation diagram. The steering of the system along solution branches is achieved through the manipulation of the bifurcation parameter, which becomes our actuator. The design approach is based on the assumption that the eigenvalues of the linearized system can be decomposed into two well separated clusters: one containing eigenvalues with large negative real parts and one containing (possibly unstable) eigenvalues close to the origin

    Solitary coherent structures in viscoelastic shear flow: computation and mechanism

    Get PDF
    Starting from stationary bifurcations in Couette-Dean flow, we compute nontrivial stationary solutions in inertialess viscoelastic circular Couette flow. These solutions are strongly localized vortex pairs, exist at arbitrarily large wavelengths, and show hysteresis in the Weissenberg number, similar to experimentally observed ``diwhirl'' patterns. Based on the computed velocity and stress fields, we elucidate a heuristic, fully nonlinear mechanism for these flows. We propose that these localized, fully nonlinear structures comprise fundamental building blocks for complex spatiotemporal dynamics in the flow of elastic liquids.Comment: 5 pages text and 4 figures. Submitted to Physical Review Letter

    About ergodicity in the family of limacon billiards

    Get PDF
    By continuation from the hyperbolic limit of the cardioid billiard we show that there is an abundance of bifurcations in the family of limacon billiards. The statistics of these bifurcation shows that the size of the stable intervals decreases with approximately the same rate as their number increases with the period. In particular, we give numerical evidence that arbitrarily close to the cardioid there are elliptic islands due to orbits created in saddle node bifurcations. This shows explicitly that if in this one parameter family of maps ergodicity occurs for more than one parameter the set of these parameter values has a complicated structure.Comment: 17 pages, 9 figure

    Solvent contribution to the stability of a physical gel characterized by quasi-elastic neutron scattering

    Full text link
    The dynamics of a physical gel, namely the Low Molecular Mass Organic Gelator {\textit Methyl-4,6-O-benzylidene-α\alpha -D-mannopyranoside (α\alpha-manno)} in water and toluene are probed by neutron scattering. Using high gelator concentrations, we were able to determine, on a timescale from a few ps to 1 ns, the number of solvent molecules that are immobilised by the rigid network formed by the gelators. We found that only few toluene molecules per gelator participate to the network which is formed by hydrogen bonding between the gelators' sugar moieties. In water, however, the interactions leading to the gel formations are weaker, involving dipolar, hydrophobic or ππ\pi-\pi interactions and hydrogen bonds are formed between the gelators and the surrounding water. Therefore, around 10 to 14 water molecules per gelator are immobilised by the presence of the network. This study shows that neutron scattering can give valuable information about the behaviour of solvent confined in a molecular gel.Comment: Langmuir (2015
    corecore