1,482 research outputs found

    Simulations of secondary Farley-Buneman instability driven by a kilometer-scale primary wave: anomalous transport and formation of flat-topped electric fields

    Full text link
    Since the 1950s, high frequency and very high frequency radars near the magnetic equator have frequently detected strong echoes caused ultimately by the Farley‐Buneman instability (FBI) and the gradient drift instability (GDI). In the 1980s, coordinated rocket and radar campaigns made the astonishing observation of flat‐topped electric fields coincident with both meter‐scale irregularities and the passage of kilometer‐scale waves. The GDI in the daytime E region produces kilometer‐scale primary waves with polarization electric fields large enough to drive meter‐scale secondary FBI waves. The meter‐scale waves propagate nearly vertically along the large‐scale troughs and crests and act as VHF tracers for the large‐scale dynamics. This work presents a set of hybrid numerical simulations of secondary FBIs, driven by a primary kilometer‐scale GDI‐like wave. Meter‐scale density irregularities develop in the crest and trough of the kilometer‐scale wave, where the total electric field exceeds the FBI threshold, and propagate at an angle near the direction of total Hall drift determined by the combined electric fields. The meter‐scale irregularities transport plasma across the magnetic field, producing flat‐topped electric fields similar to those observed in rocket data and reducing the large‐scale wave electric field to just above the FBI threshold value. The self‐consistent reduction in driving electric field helps explain why echoes from the FBI propagate near the plasma acoustic speed.NSF grants PHY-1500439 and AGS-1755350 and NASA grant NNX14AI13G supported the research presented in this work. This work used TACC and XSEDE computational resources supported by the National Science Foundation grant ACI-1053575. This paper did not use any data; simulation runs are archived on the TACC Ranch system. The authors thank one anonymous reviewer for helpful comments. (PHY-1500439 - NSF; AGS-1755350 - NSF; NNX14AI13G - NASA; ACI-1053575 - National Science Foundation)Published version2019-07-0

    Participation costs for responders can reduce rejection rates in ultimatum bargaining

    Full text link
    This paper reports data from an ultimatum mini-game in which responders first had to choose whether or not to participate. Participation was costly, but the participation cost was smaller than the minimum payoff that a responder could guarantee himself in the ultimatum game. Compared to a standard treatment, we find that the rejection rate of unfavorable offers is significantly reduced when participation is costly. A possible explanation based on cognitive dissonance is offered

    Effects of Different Convection Models Upon the High-Latitude Ionosphere

    Get PDF
    It is well known that convection electric fields have an important effect on the ionosphere at high latitudes and that a quantitative understanding of their effect requires a knowledge of plasma convection over the entire high-latitude region. Two empirical models of plasma convection that have been proposed for use in studying the ionosphere are the Volland and Heelis models. Both of these models provide a similar description of two-celled ionospheric convection, but they differ in several ways, in particular, in the manner in which plasma flows over the central polar cap and near the polar cap boundary. In order to obtain a better understanding of the way in which these two models affect the ionosphere, two separate runs of our high-latitude, time-dependent ionospheric model were made, with only the convection models distinguishing the two runs. It was found that the two models lead to differences in the ionosphere but often the differences are subtle and are swamped by universal time effects. The most notable differences are in predictions of the height of the F2 peak and in the ion temperature, particularly along the evening polar cap boundary and in the cusp region. For these two parameters, the differences caused by the two different convection models dominate the universal time effects. One question that arises is whether one could examine measurements of plasma density and temperature and determine which of the two convection models most accurately represents actual ionospheric convection. Unfortunately, it is expected that when the effects of other ionospheric inputs are considered, such as the neutral wind, the uncertainties are sufficiently large that the characteristic differences between the Volland and Heelis convection models cannot be clearly identified in an examination of plasma density and temperature measurements

    Development of a Physics-Based Reduced State Kalman Filter for the Ionosphere

    Get PDF
    A physics-based data assimilation model of the ionosphere is under development as the central part of a Department of Defense/Multidisciplinary University Research Initiative (MURI)-funded program called Global Assimilation of Ionospheric Measurements (GAIM). With the significant increase in the number of ionospheric observations that will become available over the next decade, this model will provide a powerful tool toward an improved specification and forecasting of the global ionosphere, with an unprecedented accuracy and reliability. The goal of this effort will be specifications and forecasts on spatial grids that can be global, regional, or local (25 km × 25 km). The specification/forecast will be in the form of three-dimensional electron density distributions from 90 km to geosynchronous altitudes (35,000 km). The main data assimilation in GAIM will be performed by a Kalman filter. In this paper we present a practical method for the implementation of a Kalman filter using a new physics-based ionosphere/plasmasphere model (IPM). This model currently includes 5 ion species (O2 +, N2 +, NO+, O+, and H+) and covers the low and middle latitudes from 90 km to about 20,000 km altitude. A Kalman filter based on approximations of the state error covariance matrix is developed, employing a reduction of the model dimension and a linearization of the physical model. These approximations lead to a dramatic reduction in the computational requirements. To develop and evaluate the performance of the algorithm, we have used an Observation System Simulation Experiment. In this paper, we will initially present the physics-based IPM used in GAIM and demonstrate its use in the reduced state Kalman filter. Initial results of the filter in the South American sector using synthetic measurements are very encouraging and demonstrate the proper performance of the technique

    Anomalous \u3ci\u3eF\u3c/i\u3e Region Response to Moderate Solar Flares

    Get PDF
    Ionograms recorded with a dynasonde at Bear Lake Observatory, Utah, during moderate solar x-ray flares exhibit characteristic enhancements to the E and F 1 region ionosphere. However, during these same flares, the peak electron density of the ionosphere (N m F 2) unexpectedly decreases, recovering after the flare ends. In order to reconcile this anomalous behavior with expected increases to the total electron content (TEC), we undertake a modeling effort using the Time-Dependent Ionospheric Model (TDIM) developed at Utah State University. For solar input, a simple flare time irradiance model is created, using measurements from the Solar EUV Experiment instrument on the TIMED spacecraft. TDIM simulations show that the anomalous N m F 2 response can be explained by assuming a rapid electron temperature increase, which increases the O+ scale height, moving plasma to higher altitudes. The model results are able to reproduce both the decreasing N m F 2 as well as the expected TEC enhancement

    Bounds on the basic physical parameters for anisotropic compact general relativistic objects

    Get PDF
    We derive upper and lower limits for the basic physical parameters (mass-radius ratio, anisotropy, redshift and total energy) for arbitrary anisotropic general relativistic matter distributions in the presence of a cosmological constant. The values of these quantities are strongly dependent on the value of the anisotropy parameter (the difference between the tangential and radial pressure) at the surface of the star. In the presence of the cosmological constant, a minimum mass configuration with given anisotropy does exist. Anisotropic compact stellar type objects can be much more compact than the isotropic ones, and their radii may be close to their corresponding Schwarzschild radii. Upper bounds for the anisotropy parameter are also obtained from the analysis of the curvature invariants. General restrictions for the redshift and the total energy (including the gravitational contribution) for anisotropic stars are obtained in terms of the anisotropy parameter. Values of the surface redshift parameter greater than two could be the main observational signature for anisotropic stellar type objects.Comment: 18 pages, no figures, accepted for publication in CQ

    The flow of plasma in the solar terrestrial environment

    Get PDF
    The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence

    Off-resonant emission of photon pairs in nonlinear optical cavities

    Get PDF
    Cavity-assisted spontaneous parametric down-conversion (SPDC) and spontaneous four-wave mixing (SFWM) in nonlinear optical materials are practical and versatile methods to generate narrowband time-energy entangled photon pairs. Time- energy entangled photons with tailored spectro-temporal properties are particularly useful for efficient quantum optical interfaces. In this work we study the generation of photon pairs in cavity-assisted SPDC and SFWM for the general case of off-resonant conversion, namely, when the frequencies of the generated photons do not match the cavity resonances. Such a frequency mismatch in particular depends on temperature and requires an additional control in the experiment. First, we propose a generic model, for description of cavity-assisted SPDC and SFWM. We show that in both processes the mismatch reduces the generation rate of photons, distorts the spectrum and the auto-correlation function of the generated fields, as well as affects the photon generation dynamics. Second, we verify the results experimentally using parametric generation of photon pairs in a nonlinear whispering gallery mode resonator (WGMR) as an experimental platform with controlled frequency mismatch. Our work reveals the role of the frequency mismatch in the photon generation process and shows a way to control it. Obtained results constitute one more step in the direction of full control over the spectro-temporal properties of entangled photon pairs and the heralded generation of single-photon pulses with a tailored temporal mode

    Additional Developments in Atmosphere Revitalization Modeling and Simulation

    Get PDF
    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM

    Observations of the Diurnal Dependence of the High-Latitude \u3ci\u3eF\u3c/i\u3e Region Ion Density by DMSP Satellites

    Get PDF
    Data from the DMSP F2 and F4 satellites for the period December 5-10, 1979, have been used to study the diurnal dependence of the high-latitude ion density at 800-km altitude. A 24-hour periodicity in the minimum orbital density (MOD) during a crossing of the high-latitude region is observed in both the winter and summer hemispheres. The phase of the variation in MOD is such that it has a minimum during the 24-hour period between 0700 and 0900 UT. Both the long term variation of the high-latitude ion density on a time scale of days, and the orbit by orbit variations at the same geomagnetic location in the northern (winter) hemisphere for the magnetically quiet time period chosen show good qualitative agreement with the diurnal dependence predicted by a theoretical model of the ionospheric density at high latitudes under conditions of low convection speeds (Sojka et al., 1981a)
    • 

    corecore