1,196 research outputs found

    Dissipation characteristics of quantized spin waves in nano-scaled magnetic ring structures

    Full text link
    The spatial profiles and the dissipation characteristics of spin-wave quasi-eigenmodes are investigated in small magnetic Ni81_{81}Fe19_{19} ring structures using Brillouin light scattering microscopy. It is found, that the decay constant of a mode decreases with increasing mode frequency. Indications for a contribution of three-magnon processes to the dissipation of higher-order spin-wave quasi-eigenmodes are found

    Assessing the convergent validity between the automated emotion recognition software Noldus FaceReader 7 and Facial Action Coding System Scoring

    Get PDF
    This study validates automated emotion and action unit (AU) coding applying FaceReader 7 to a dataset of standardized facial expressions of six basic emotions (Standardized and Motivated Facial Expressions of Emotion). Percentages of correctly and falsely classified expressions are reported. The validity of coding AUs is provided by correlations between the automated analysis and manual Facial Action Coding System (FACS) scoring for 20 AUs. On average 80% of the emotional facial expressions are correctly classified. The overall validity of coding AUs is moderate with the highest validity indicators for AUs 1, 5, 9, 17 and 27. These results are compared to the performance of FaceReader 6 in previous research, with our results yielding comparable validity coefficients. Practical implications and limitations of the automated method are discussed

    Mesenchymal Stem Cells and Inflammatory Cardiomyopathy: Cardiac Homing and Beyond

    Get PDF
    Under conventional heart failure therapy, inflammatory cardiomyopathy usually has a progressive course, merging for alternative interventional strategies. There is accumulating support for the application of cellular transplantation as a strategy to improve myocardial function. Mesenchymal stem cells (MSCs) have the advantage over other stem cells that they possess immunomodulatory features, making them attractive candidates for the treatment of inflammatory cardiomyopathy. Studies in experimental models of inflammatory cardiomyopathy have consistently demonstrated the potential of MSCs to reduce cardiac injury and to improve cardiac function. This paper gives an overview about how inflammation triggers the functionality of MSCs and how it induces cardiac homing. Finally, the potential of intravenous application of MSCs by inflammatory cardiomyopathy is discussed

    Direct observation of domain wall structures in curved permalloy wires containing an antinotch

    Get PDF
    The formation and field response of head-to-head domain walls in curved permalloy wires, fabricated to contain a single antinotch, have been investigated using Lorentz microscopy. High spatial resolution maps of the vector induction distribution in domain walls close to the antinotch have been derived and compared with micromagnetic simulations. In wires of 10 nm thickness the walls are typically of a modified asymmetric transverse wall type. Their response to applied fields tangential to the wire at the antinotch location was studied. The way the wall structure changes depends on whether the field moves the wall away from or further into the notch. Higher fields are needed and much more distorted wall structures are observed in the latter case, indicating that the antinotch acts as an energy barrier for the domain wal

    Surface Tension, Interfacial Tension and Phase Behavior: Interactions of Surfactant/Polymer Solutions with Crude Oil

    Get PDF
    Advanced oil recovery techniques, beyond primary and secondary recovery, are required in order to produce additional oil in existing reservoir rock. Here, we evaluated a combination of polymer and surfactant aqueous solutions, in order to generate a working fluid capable of achieving high-performance enhanced oil recovery (EOR). In this recovery process, surfactant is added to the water flooding mixture in order to lower the interfacial tension between the oil and the water. If the interfacial tension can be decreased by ~1,000-fold, then the aqueous solution can mobilize and displace the oil. Moreover, a polymer is added to the aqueous solution in order to increase the viscosity of the working fluid. Aqueous solutions with a viscosity higher than the oil viscosity can produce a stable flow of oil. However, the exact combination and concentration needed for these two key components to be effective is dependent on each oil reservoir and requires several experiments and specific tuning in order to yield an effective design. In order to determine the optimal combination, the effects of the average molecular weight of the polymers, the surfactant chemistry, and their combinations in salt solutions (at varying salt concentrations) were investigated. Specifically, the surface tension of aqueous solutions against air and the interfacial tension against oil and the phase behavior of the polymer-surfactant systems were evaluated with a model hydrocarbon, dodecane, and with crude oil. By varying the molecular properties of the surfactant and the polymer, we found a technically promising surfactant-polymer combination for potential EOR application

    Continuous measurement of global difference coupling using a phase-locked-loop tune meter in the Relativistic Heavy Ion Collider

    Get PDF
    We present a new technique to continuously measure and compensate the global difference coupling coefficient through the continuous measurements of eigenmode projection parameters, using a high resolution phase-locked-loop tune meter. First, four eigenmode projection parameters are defined as the observables for weak difference coupling. Then, their analytical expressions are obtained using the strict matrix treatment and the Hamiltonian perturbation theory of linear coupling. From these parameters, the complex global coupling coefficient can be fully determined and compensated. This method was successfully demonstrated in the Relativistic Heavy Ion Collider (RHIC) 2006 run

    Habitat complexity affects functional traits and diversity of ant assemblages in urban green spaces (Hymenoptera: Formicidae)

    Get PDF
    Habitat complexity conferred by vegetation characteristics mediates key processes that govern the assemblage of insect communities. Thus, species within the community should only persist if their functional traits are well-matched to the conditions of their environment. Here, we compared ant assemblages between habitats in terms of species richness and functional-trait distribution at the species and the assemblage level. Ants were collected from 36 sites representing different degrees of habitat complexity mediated by standing vegetation. We found fewer ant species in simpler habitats, supporting the "habitat-heterogeneity" hypothesis. We measured key functional traits of ants that reflect their foraging and dispersal strategies, such as body size, femur length, antenna scape length, and head length / width. Interactions of species traits with measured habitat complexity variables were assessed at the species and the assemblage level using a fourth-corner approach. Ant traits were closely related to environmental complexity. In wooded habitats, ants were larger and had broader heads, while ants with longer antenna scapes prevailed in habitats with a dense herb / grass layer. Our study suggests that vegetation structural complexity can act as an environmental filter, driving ant assemblages in terms of both species numbers and functional traits. Our results can be used to predict turnover patterns in ant assemblages due to changes in management practices

    Individual Variation in Fathers’ Testosterone Reactivity to Infant Distress Predicts Parenting Behaviors with their 1-Year-Old Infants

    Get PDF
    Positive father involvement is associated with positive child outcomes. There is great variation in fathers’ involvement and fathering behaviors, and men’s testosterone (T) has been proposed as a potential biological contributor to paternal involvement. Previous studies investigating testosterone changes in response to father-infant interactions or exposure to infant cues are unclear as to whether individual variation in T is predictive of fathering behavior. We show that individual variation in fathers’ T reactivity to their infants during a challenging laboratory paradigm (Strange Situation) uniquely predicted fathers’ positive parenting behaviors during a subsequent father-infant interaction, in addition to other psychosocial determinants of paternal involvement, such as dispositional empathy and marital quality. The findings have implications for understanding fathering behaviors and how fathers can contribute to their children’s socioemotional development
    corecore