
UNCLASSIFIED

Executive summary

UNCLASSIFIED

Nationaal Lucht- en Ruimtevaartlaboratorium

National Aerospace Laboratory NLR

This report is based on a presentation held at the IEEE AUTOTESTCON 2007
conference, Baltimore, U.S.A., 17-20 September 2007.

Report no.
NLR-TP-2007-536

Author(s)
B.C. Schultheiss
A.M. Vollebregt
C. Hummelink

Report classification
UNCLASSIFIED

Date
September 2007

Knowledge area(s)
Aerospace Collaborative
Engineering & Design
Health Monitoring & Maintenance
of Aircraft

Descriptor(s)
XML Database
XQuery
XPath
Signal data
Life and Usage monitoring

Storing heterogeneous helicopter signal data: Advantages of
using an XML Database

Problem area
The Netherlands Armed Forces
operate several types of helicopters,
such as Chinook, Apache, Cougar,
Lynx, and in the future NH90
helicopters. To increase reliability
and availability, and to decrease
maintenance costs, insight on the
impact of helicopter missions on the
life of the helicopter’s airframe,
helicopter’s engine, and other sub
systems is required.

Description of work
To support gaining insight on the
impact of the missions on the life of
the helicopters’ sub systems, the
Netherlands Armed Forces awarded
NLR a contract for the development
of a Helicopter Life and Usage
Monitoring system (HELIUM) for
collecting, storing and analyzing
large amounts of flight data, health
data and usage data of the
helicopters. An essential part of
HELIUM is the data storage
environment for storing flight
administrative data as well as data

available from Flight Data
Recorders, Spectrapots, ACRA
boxes, and Health and Usage
Monitoring Systems. This paper
investigates the advantages of using
Extensible Markup Language
(XML) and XML Database
technology to implement this data
storage environment.

Results and conclusions
In general, using structured
documents as input for the data
storage and output from the data
storage provides many advantages
such as easy conversions, well
defined syntax, excellent support in
for example the Java programming
language, and a human readable
format.

Using XML database technology
for storing the measured flight and
administrative documents provides
a data storage in which the logical
structure – the structured documents
– is separated from the physical
storage.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NLR Reports Repository

https://core.ac.uk/display/53034251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNCLASSIFIED

UNCLASSIFIED

2

Storing heterogeneous helicopter signal data: Advantages of using an XML
Database

Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR

Anthony Fokkerweg 2, 1059 CM Amsterdam,
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands
Telephone +31 20 511 31 13, Fax +31 20 511 32 10, Web site: www.nlr.nl

Using XML database technology,
heterogeneous datasets can be
accessed without having to know
how the information is internally
stored in the database. For example,
the query does not need to know
that an XML document is internally
stored in multiple tables. New XML
document types can be added
without having to alter the queries
in use.

Applicability
This paper addresses the rationale
behind using an XML Database for
storing heterogeneous helicopter

signal data. The data is
heterogeneous because a helicopter
may have multiple data sources,
such as Flight Data Recorders and
Spectrapots, and also because data
of multiple helicopter types must be
stored and analyzed. Due to the
generic set-up, the results are
applicable to storing and analyzing
the flight administrative data and
measured flight data for the
Netherlands Armed Forces used
helicopter types Chinook, Apache,
Cougar and NH90.

Nationaal Lucht- en Ruimtevaartlaboratorium
National Aerospace Laboratory NLR

NLR-TP-2007-536

Storing heterogeneous helicopter signal data:
Advantages of using an XML Database

B.C. Schultheiss, A.M. Vollebregt and C. Hummelink1

1 Defence Materiel Organisation

This report is based on a presentation held at the IEEE AUTOTESTCON 2007 conference, Baltimore, U.S.A.,
17-20 September 2007.
The contents of this report may be cited on condition that full credit is given to NLR and the authors.
This publication has been refereed by the Advisory Committee AEROSPACE VEHICLES.

Customer NLR
Contract number ----
Owner NLR
Division Aerospace Vehicles
Distribution Unlimited
Classification of title Unclassified
 January 2010
Approved by:

Author

Reviewer Managing department

NLR-TP-2007-536

 2

Summary

The Netherlands Armed Forces operate several types of helicopters, such as Chinook, Apache,
Cougar, Lynx, and in the future NH90 helicopters. To gain insight on the impact of helicopter
missions on the life of the helicopter’s airframe, helicopter’s engine, and other vehicle systems,
large amounts of measured flight data, and flight administrative data of the helicopters have to
be collected, stored and analyzed. This paper presents the advantages of using an XML database
for storing and querying the collected heterogeneous helicopter signal data.

NLR-TP-2007-536

 3

Contents

1 Introduction 4

2 Helicopter usage monitoring 5

3 Storing measured flight data and flight administrative data in an XML Database 7
3.1 Using XML documents 7
3.2 XML database or relational database 9
3.3 XML Schema revolution and database creation 10

4 XPATH and XQuery access to the XML Database 12

5 Conclusions 16

References 17

NLR-TP-2007-536

 4

1 Introduction

The Netherlands Armed Forces operate several types of helicopters: Chinook (Figure 1),
Apache, Cougar, Lynx and in the future NH90 (which will replace the Lynx).

Figure 1- Boeing CH47-D Chinook transport helicopter

The Netherlands Armed Forces need insight in how the helicopters have performed and what
the impact is on the life of the helicopter, and in particular the airframe, the engine and the other
vehicle systems. This insight provides valuable information for sustaining the fleet and
helicopter readiness for deployments. To get this insight, large amounts of measured flight and
flight administrative data of the helicopters have to be collected, stored and analyzed.

The Netherlands Armed Forces awarded NLR a contract for the development of a Helicopter
Life and Usage Monitoring system (HELIUM) to support gaining this insight. This paper
focuses on the data storage environment within HELIUM. First, the context will be explained:
helicopter usage monitoring. Next, the advantages of using XML documents and using an XML
database will be shown. After that, querying the stored XML data is explained. Conclusions and
references can be found in the last two sections.

NLR-TP-2007-536

 5

2 Helicopter usage monitoring

NLR derives data using several analysis tools from the measured flight data and the flight
administrative data, and uses this derived data for reporting the status (for example damage
information) of the helicopter fleet to the Netherlands Armed Forces. The purpose of these
status reports is not only to support the aim for increased operational availability of the
helicopters, but also Performance Based Logistics.
The combination of using the Helicopter Life and Usage Monitoring system (HELIUM) and the
expected use of more advanced data recorders in the near future will provide the Netherlands
Armed Forces with increased insight in the status of their helicopter fleet and thus can optimize
the operational availability of the helicopters.
Performance Based Logistics is a logistics model that puts in place specific goals and metrics to
evaluate success. When an operator employs this model and outsources the maintenance and
part supply to commercial parties it may happen that the operator looses its insight into its own
key performance figures, and thus looses its grip on the flight safety, usage and availability of
aircraft. This makes it necessary for the operator to have control and assessment tools to
monitor the numbers involved in Performance Based Logistics. The HELIUM system provides
these figures. Examples of information directly generated from the data storage environment
include periodic reporting such as: “the damage accumulated during the last month” and ad hoc
queries such as: “How many Chinook helicopters have flown above a certain weight limit?”.

The remainder of this section will explain the measured flight data, the need for centrally storing
this data, and the process of applying analysis tools to obtain the required derived data.

With respect to sustaining its helicopter fleet, the Netherlands Armed Forces have several
sources of measured flight data and flight administrative data. The measured flight data is
collected using various Flight Data Recorders (FDRs), such as L-3 voice and data recorders,
spectrapots, and ACRA boxes. Also data from Health and Usage Monitoring Systems (HUMS)
will be used.
The size of raw data captured during one hour of a single flight of for example a Chinook
helicopter equipped with a CVFDR (Combined Voice and Flight Data Recorder) in combination
with the MDAU (Modular Data Acquisition Unit), a SPECTRAPOT-4C (a four channel
Structural Data Recorder) and an ACRA-box is in the magnitude order of tens of Megabytes.
Data must be stored for numerous flights of several types of helicopters - Chinooks, Apaches,
Cougars, NH90s - during years, thus requiring a database capable of storing a large amount of
data.

NLR-TP-2007-536

 6

The input data for the data storage environment will change over the years due to new types of
data recorders, additional signals, and even new types of helicopters. The data storage
environment will also change due to improvements of the database: for example by adding
additional constraints on data. So flexibility is an important requirement.

NLR applies several analysis tools to the measured flight data, such as calculation of damage
indices for the airframe and engine, derivation of flight regimes, and re-creation of flights. NLR
uses this derived data for reporting the status (for example damage information) of the
helicopter fleet to the Netherlands Armed Forces. This process is shown in Figure 2.

Measured flight data
- FDR
- Spectrapot
- ACRA box
- HUMS
- etc.

Flight administrative data
Helicopter admin.data Reference data

Flight Recreation Module
Flight Regime Recognition
Damage index calculation

etc.

Usage monitoring reports

 Data cleaner,
quality
control,etc.

Data
Storage

Convert
raw data

Figure 2 - Measured flight data and flight administrative data for helicopter usage monitoring

To be able to report on for example specific flights, on specific helicopters, or on specific
periods, the measured flight data must be retrieved from the helicopters and be stored in a
central data storage environment. Reports generated from the measured flight data and flight
administrative data contain information that is generated by querying the data storage
environment, and contain the already mentioned derived data.
However, before the data is ready for report generation processing, the yet raw data must be
converted to a format that is accepted by the data storage environment, and the quality of the
data must be checked and cleaned (check for spikes, flat liners, or remove or mark blocks of
anomalous data).

NLR-TP-2007-536

 7

3 Storing measured flight data and flight administrative data in an
XML Database

The previous chapter showed that Data Cleaner tools, Data Quality Control tools, and Analysis
tools must be able to access the stored data. Section 3.1 will analyse the advantages of using the
Extensible Markup Language (XML) for the interfaces between these tools and the data storage.

The previous chapter also explained the need for a flexible data storage capable of storing data
from new and yet unknown types of data recorders, additional signals, and even new types of
helicopters. Section 3.2 discusses database technology capable of providing this flexible
storage. When using XML Database technology to implement this flexible storage, XML
Schema Revolution is an important subject, see section 3.3.

3.1 Using XML documents
Using XML as input for, and as output from the data storage environment has a number of
advantages:

• The XML format can be specified unambiguously using an XML-schema. So, input for
the data storage environment can be checked before submitting it to the data storage
environment. Components that provide data to the database can be developed
independently because the interface is defined using the XML schema.

• XML is readable text which is an advantage in an engineering environment using all
kinds of analysis tools. Using a browser such as Internet Explorer will show the XML
nicely formatted.

• XML can be easily translated into Excel, (X)HTML, PDF, MSWord, and other formats
using the Extensible Stylesheet Language Transformations (XSLT). XSLT is an XML-
based language used for the transformation of XML documents.

• Parsing and using XML is well supported by many platforms, including the Java
programming language.

For each of the helicopter types, the measured flight signals are stored as XML data. The format
is similar to the format shown in Figure 3.
If for the same time steps a number of signals are measured simultaneously, then these values
are combined in a single line specification (<line>...</line>).

XML Schemas specify the syntax including restrictions on the data of the XML documents. The
XML schemas used in HELIUM for the different types of helicopters are similar, but not the
same. The similarity is that each schema will define a DataSet containing lines line; that each

NLR-TP-2007-536

 8

line contains the signal values for a certain time step, and that each signal value is optional thus
allowing for maximum flexibility. However, the actually measured signals and their node names
are different for the different types of helicopters.

<?xml version="1.0" encoding="UTF-8" ?>

<chinookmeasureddata>

 <DataSet>

 <line>

 <time>6711.11</time>

 <magneticHeading>225.791</magneticHeading>

 <calibratedAirspeed>69.1875</calibratedAirspeed>

 <yawad>0.0</yawad>

 ...

 </line>

 <line>

 <time>6711.23</time>

 ...

 </line>

 ...

 </DataSet>

</chinookmeasureddata>

Figure 3 - A Chinook example: combine signals that are measured at the same time into one
line

The examples in this paper use long XML node names such as “magneticHeading”. For the
storage of the XML documents, using long names does not affect the database size and it
improves the readability. However, for retrieving XML documents from the database, uploading
XML documents to the database, the pre-processing steps (data cleaning and quality control),
and the post-processing steps (e.g. damage index calculation), smaller XML node names will
result in smaller files that are easier to handle. For example use “t” rather than “time”, and
“mhdg” rather than “magneticHeading”.

Input for the XML data storage environment is for example “IRIG-106 chapter 10” data, see [2].
Output of the XML data storage environment will be used by other HELIUM tools, such as
analysis tools, report generators, and a flight recreation module (i.e. flight visualization
software).
So, interoperability is an important issue. XML standards for storing time series data with
metadata are being developed in for example the Statistical Data and Metadata Exchange

NLR-TP-2007-536

 9

standard [3], and the Automatic Test Markup Language [4] initiatives. However, we want to
exploit the knowledge about signal data parameters to be stored to optimize the storage. Also,
our XML schemas may define restrictions on signal values for specific signals. Interoperability
issues can be solved by including a translator that translates the internally used XML data
format from and to the requested interoperable format.

3.2 XML database or relational database
In previous (still operational) NLR projects, Oracle relational databases have been used to store
F-16 [1] and C-130 Hercules measured flight data. For the Hercules database, Oracle specific
technology has been applied: VARRAYs, a data type that allows for efficient storage of a
variable number of data elements. Typically, the measured flight data may not always contain
the same amount of parameters, and using VARRAYs is therefore an efficient solution. A
disadvantage of using VARRAYs, but also of using a relational database in general is that the
queries depend on the relational table structure; on how XML documents are mapped on the
tables.

Since we want to support data storage for multiple helicopter weapon systems, and we want to
be prepared for new measured signals or even additional helicopter types, separation of the
logical model (the XML documents) from the physical model is important. XML databases
together with the XQuery[6] language provide this advantage.

Several commercial and open source XML Databases are available.
eXist [9] is an Open Source XML Database featuring index-based XQuery processing,
automatic indexing, extensions for full-text search, XUpdate support, XQuery update
extensions, and support for a RESTful [14] interface. eXist was surprisingly easy to install and
to use, and very usable for gaining first experiences. We have not investigated the application of
eXist with a really large dataset: eXist was only used with a limited dataset of large (up to
100MB) XML documents.
Oracle XML DB [7][8] provides capabilities for storage and access to XML data and extends
the well-known Oracle database. Our experience with the Oracle 10g XML DB is that it
responds less friendly to small mistakes. However, first tests with Oracle 11g XML DB are
promising. Also, Oracle supports versioning of XML documents. In the NLR environment with
preprocessing tools that provide input XML data, and analysis tools that use data from the XML
Database to calculate derived data, the version of the data as well as the version of the software
that has been used to calculate derived data is important. Therefore, XML document version
support may proof to be useful.
Also IBM’s DB2 VIPER product supports XML database with XQueries [10].

NLR-TP-2007-536

 10

Another advantage of using an XML Database instead of a relational database is that storing and
retrieving the original XML documents without any loss of fidelity can be guaranteed.
Moreover, XML databases such as Oracle and eXist provide a WebDAV folder hierarchy view
on the stored XML documents. WebDAV - Web-based Distributed Authoring and Versioning -
is an extension of the HTTP protocol and allows for adding and retrieving documents from a
remote server. Although the XML Databases will store the XML documents in an internal
format, XML documents as submitted to the database can be retrieved without any loss of
fidelity. Figure 4 shows that this folder/file hierarchy can be viewed via Microsoft Explorer. As
a result, XML documents can be added or retrieved using simple drag and drop operations.

Figure 4 - An XML Database with WebDAV support can be viewed in a folder/file hierarchy
using Microsoft Explorer

Since preprocessing tools providing the input XML data and the analysis tools providing the
derived XML data may change in time, the traceability from a usage monitoring report to its
input data and applied analysis tools and preprocessing tools (including their version number) is
important. An XML database such as Oracle provides support for versioning of XML
documents.

3.3 XML Schema revolution and database creation
Oracle supports both structured and unstructured storage [8]. A key decision to make when
using Oracle XML DB for persisting XML documents is the choice when to use structured
storage and when to use unstructured storage.
Unstructured storage provides high throughput when inserting and retrieving entire XML
documents. It also provides the greatest degree of flexibility in terms of the structure of the
XML that can be stored. However, there is little the (Oracle) database can do to optimize
queries and updates.

NLR-TP-2007-536

 11

When using structured storage, the XML Schemas are used to generate the underlying database
structure. Since we need to query the database on for example maximum, minimum, average
values of signals, we need to use Oracle’s structured storage. Then, creating the database
consists of using Oracle’s “dbms_xmlschema.registerSchema”; see [8] for more details.

Using structured storage implies that we need to take care of changing XML Schemas. XML
Schemas will change in time due to improved typing of, and constraints on elements (for
example to improve the quality of the stored data, constraints on allowed values might be added
later on), missing subcomponents (for example a new measurement tool is added providing
additional signals) and additional helicopter system types with new signals. Oracle supports
XML Schema revolution.

For eXist [9], the separation between structured and unstructured storage is not made. Structural
indexes that keep track of the elements (tags), attributes, and nodal structure for all XML
documents are created and maintained automatically. Range indexes are indexes based on the
data type of specific node values in the document. These indexes provide a shortcut for the
database to directly select nodes based on these type values. Unlike structural indexes, range
indexes can be created and configured directly by the user, and in this sense, they are similar to
indexes used by relational databases. When starting the eXist database, a database instantiation
is readily available; creating a database for a specific user is not available.

NLR-TP-2007-536

 12

4 XPATH and XQuery access to the XML Database

The previous chapter analysed the advantages of using an XML Database to store the measured
flight data and the flight administrative data. The query language to access an XML Database is
XQuery[6]. This section will show that when using XQueries on an XML Database, a flexible
infrastructure is provided in which queries or additional helicopter systems can be easily added.

The XQuery examples in this section show that although the measured flight data XML
Schemas are different for the different types of helicopters, obtaining the “DataSet” is exactly
the same. This is achieved by using an XPath expression to address the “DataSet” portion of the
XML document only and skipping the surrounding XML code. For an example, see the usage of
the “//” XPath operator in Figure 5.
Figure 5 also shows that the XML Database contents can be seen as a hierarchy of folders with
XML documents. The XQuery in Figure 5 searches in XML documents that are stored in folder
“/loadmonitoring/data/chinook/measured_flight_data/2005/D101/D101_050406_C”:

/loadmonitoring
 /data
 /chinook
 /measured_flight_data
 /year=2005
 /tail=D101
 /flightId=D101_050406_C.

XQuery:

for $dataset in collection(

 "/loadmonitoring/data/chinook/measured_flight_data/2005/D101/D101_050406_C") // DataSet

return $dataset

Answer:

<DataSet>

 <line>

 <time>14252.1</time>

 <magneticHeading>315.879</magneticHeading>

 <cruiseGuide>194.296</cruiseGuide>

 <groundSpeed>130.25</groundSpeed>

NLR-TP-2007-536

 13

 <latAcceleration>-0.0080974</latAcceleration>

 <longAcceleration>-0.090067</longAcceleration>

 <weightOnWheels1>1.0/weightOnWheels1>

 ...

 </line>

 <line>

 <time>14252.2</time>

 ...

 </line>

 ...

</DataSet>

Figure 5 - XQuery and answer for obtaining a dataset for a specific flight. “//DataSet” ensures
that independent of XML schemas, the DataSet will be returned.

Input for, for example, a flight recreation module, or input for a damage index calculation
requires in general only the time stamp with a specific signal value. Figure 6 shows the XQuery
for requesting a DataSet that will only contain the time step and a specified signal.

XQuery:

<DataSet>{

 for $line in collection(

 "/loadmonitoring/data/chinook/measured_flight_data/2005/D101/D101_050406_C")//DataSet/line

 let $t:=$line/time

 let $signal:=$line/rotorSpeed

 where $t and $signal

 return <line>{$t}{$signal}</line>

}</DataSet>

Answer:

<DataSet>

 <line>

 <time>27246.6</time>

 <rotorSpeed>100.406</rotorSpeed>

 </line>

 <line>

 <time>27247.1</time>

 <rotorSpeed>100.469</rotorSpeed>

NLR-TP-2007-536

 14

 </line>

 ...

</DataSet>

Figure 6 - XQuery for obtaining one DataSet containing only time time and signal rotorSpeed

Our experience is that requesting large XML documents may take a lot of time due to its
memory consumption, e.g. during parsing. An approach to avoid large XML files when
obtaining signal data is shown in Figure 7. Instead of requesting one large “DataSet” document,
a large set of single “line” XML documents is returned.

XQuery:

for $line in collection(

 "/loadmonitoring/data/apache/measured_flight_data/2005/PQ16/PQ16_041115_B")//DataSet/line

let $t:=$line/time

let $signal:=$line/totalTrueAirspeed

where $t and $signal

return <line>{$t}{$signal}</line>

Answer: 1339 items

1

2

3

<line>

 <time>69758.7</time>

 <totalTrueAirspeed>0.0</totalTrueAirspeed>

</line>

<line>

 <time>69767.7</time>

 <totalTrueAirspeed>3.92</totalTrueAirspeed>

</line>

...

Figure 7 - XQuery for obtaining multiple lines line answers instead of one large DataSet

In the above examples, we have not shown the usage of namespaces. An XML namespace
provides uniquely named elements and attributes in an XML instance. XML namespaces have
also been adopted by XQueries. When using Oracle XML DB in combination with multiple
XML Schemas, namespaces must be used. This complicates the reuse of the same XQueries for
different helicopter types. However, in our environment we are not using queries that span for
example Apache and Chinook XML data at the same time. In HELIUM, first a helicopter type
is selected. Knowing the helicopter type, the XQuery can be easily prefixed with a namespace

NLR-TP-2007-536

 15

declaration, and the name space prefixes can be inserted in an XQuery. An example of such an
XQuery is shown in Figure 8.

declare namespace ns= "http://www.nlr.nl/apachemeasureddata.xsd" (: :)

for $dataset in collection(

 "/loadmonitoring/data/apache/measured_flight_data/2005/PQ16/PQ16_041115_B")//ns:DataSet

where $dataset/ns:totalTrueAirspeed

return $dataset
Figure 8 - XQuery with namespace declaration

An example of a more complicated XQuery is searching for the names of the flight data signals
that have been stored in the measured flight data. Another more complicated example is an
XQuery that returns DataSets depending on for example conditions on signals such as on the
maximum weight, the external load, or climb speed. And a third example of a more complicated
XQuery is an XQuery that derives for each signal of each flight its characteristics such as
maxima and minima, and that stores this derived data in derived data XML documents. The goal
of storing this derived data instead of recalculating it each time it is required is to be able to
provide quick answers when working interactively with the database. Also versioning of XML
documents may further complicate XQueries.

The conclusion of this section is that using XQueries (that include XPath expressions) provides
a flexible infrastructure in which queries on new signals (for example due to new flight data
recorders), or additional helicopter systems can be easily added, and in which existing queries
can be re-used without any change.

NLR-TP-2007-536

 16

5 Conclusions

In general, using XML documents as input for the data storage and output from the data storage
provides many advantages such as easy converting to and from XML documents, well defined
syntax using XML Schemas, excellent support in e.g. Java, and a human readable format, see
section 3.1.

Using an XML database for storing the measured flight and administrative XML documents
provides a data storage in which the logical structure – the XML documents – is separated from
the physical storage, see section 3.2. Chapter 4 showed that using XQueries and XPath
expressions, heterogeneous datasets can be accessed without having to know how the
information is internally stored in the database. For example, the XQuery does not need to know
that an XML document is internally stored in multiple tables. New XML Schemas can be added
without having to alter the XQueries in use.

Care must be taken to be able handle large XML documents. When designing the XML
Schemas, using short node names may be important to reduce the size of XML documents
during pre-processing and the post-processing steps. When retrieving results from a database,
our experience is that using XQueries that result in a large set of small XML document results
have better performance than using XQueries that result in a single large XML document.

Section 3.2 also showed that the XML database WebDAV interface provides a useful folder/file
view on the database, allowing for easy adding and retrieving XML documents using drag and
drop as today’s computer user is familiar with.

Concluding, storing the measured flight data and the flight administrative data of the several
types of helicopter weapon systems in an XML Database provides a flexible database
infrastructure for storing and accessing these heterogeneous data, and supports adding new
types of data recorders, additional signals, and even new types of helicopters.

NLR-TP-2007-536

 17

References

[1] F.C. te Winkel and D.J. Spiekhout, RNLAF/F-16 Loads and usage
 monitoring/management program, NLR report NLR-TP-2002-309, can be obtained via
 http://www.nlr.nl
[2] J.M. Klijn, Development of flight test instrumentation: an evolutionary approach, NLR
 report NLR-TP-2006-407, can be obtained via http://www.nlr.nl
[3] Statistical Data And Metadata Exchange Initiative SDMX, SDMX standards version
 2.0, http://www.sdmx.org/
[4] Automatic Test Markup Language (ATML), http://grouper.ieee.org/groups/scc20/tii/
[5] H.H. Ottens, and R.J.H., Wanhill, Review of aeronautical fatigue investigations in the
 Netherlands during the period March 2001 - March 2003, prepared for The 28th ICAF
 Conference in Lucerne, Switzerland, 5-9 May 2003, NLR-TP-2003-251, can be
 obtained via http://www.nlr.nl
[6] XQuery 1.0: An XML Query Language, http://www.w3.org/TR/xquery/
[7] Oracle® XML DB, http://www.oracle.com/ technology/tech/xml/xmldb/index.html
[8] Oracle® XML DB Developer's Guide 10g Release 2 (10.2) Part Number B14259-02;
 can be found using http://www.oracle.com/ pls/db102/portal.all_books#index-XML
[9] eXist, an Open Source native XML Database, http://exist.sourceforge.net/
[10] K Beyer et al, DB2 goes hybrid: Integrating native XML and XQuery with relational
 data and SQL, IBM Systems Journal, Volume 45, Number 2, 2006,
 http://www.research.ibm. com/journal/sj/452/beyer.html
[11] A. Balmin et al, On the Path to Efficient XML Queries, 2006,
 http://www.vldb.org/conf/2006/ p1117-balmin.pdf
[12] Eric Sadler, Managing Structure in Bits & Pieces:The Killer Use Case for XML, 2005,
 http://delivery.acm.org/10.1145/1070000/1066256/p818sedlar.pdf
[13] Application programming interface for XML Databases,
 http://xmldb-org.sourceforge.net/ xapi (eXist supports an XML:DB interface)
[14] R.T. Fielding, Chapter 5: Representational State Transfer (REST),
 http://www.ics.uci.edu/ ~fielding/pubs/dissertation/rest_arch_style.htm (eXist supports
 RESTful interfaces)

	1 Introduction
	2 Helicopter usage monitoring
	3 Storing measured flight data and flight administrative data in an XML Database
	3.1 Using XML documents
	3.2 XML database or relational database
	3.3 XML Schema revolution and database creation

	4 XPATH and XQuery access to the XML Database
	5 Conclusions

