315 research outputs found

    On the co-existence of chemically peculiar Bp stars, slowly pulsating B stars and constant B stars in the same part of the H-R diagram

    Get PDF
    Aims. In order to better model massive B-type stars, we need to understand the physical processes taking place in slowly pulsating B (SPB) stars, chemically peculiar Bp stars, and non-pulsating normal B stars co-existing in the same part of the H-R diagram. Methods. We carry out a comparative study between samples of confirmed and well-studied SPB stars and a sample of well-studied Bp stars with known periods and magnetic field strengths. We determine their evolutionary state using accurate HIPPARCOS parallaxes and Geneva photometry. We discuss the occurrence and strengths of magnetic fields as well as the occurrence of stellar pulsation among both groups. Further, we make a comparison of Geneva photometric variability for both kinds of stars. Results. The group of Bp stars is significantly younger than the group of SPB stars. Longitudinal magnetic fields in SPB stars are weaker than those of Bp stars, suggesting that the magnetic field strength is an important factor for B type stars to become chemically peculiar. The strongest magnetic fields appear in young Bp stars, indicating a magnetic field decay in stars at advanced ages. Rotation periods of Bp and pulsation periods of SPB stars are of the same order and the behaviour of Geneva photometric variability of some Bp stars cannot be distinguished from the variability of SPB stars, illustrating the difficulty to interpret the observed variability of the order of days for B-type stars. We consider the possibility that pulsation could be responsible for the variability among chemically peculiar stars. In particular, we show that a non-linear pulsation model is not excluded by photometry for the Bp star HD175362.Comment: Accepted for publication in Astronomy & Astrophysics on 29/01/2007, 8 pages, 9 figure

    Generation of a Fully Human scFv that binds Tumor-Specific Glycoforms

    Get PDF
    Tumor-specific glycosylation changes are an attractive target for the development of diagnostic and therapeutic applications. Periostin is a glycoprotein with high expression in many tumors of epithelial origin including ovarian cancer. Strategies to target the peptide portion of periostin as a diagnostic or therapeutic biomarker for cancer are limited due to increased expression of periostin in non-cancerous inflammatory conditions. Here, we have screened for antibody fragments that recognize the tumor-specific glycosylation present on glycoforms of periostin containing bisecting N-glycans in ovarian cancer using a yeast-display library of antibody fragments, while subtracting those that bind to the periostin protein with glycoforms found in non-malignant cell types. We generated a biotinylated form of a fully human scFv antibody (scFvC9) that targets the bisecting N-glycans expressed by cancer cells. Validation studies in vitro and in vivo using scFvC9 indicate this antibody can be useful for the development of diagnostic, imaging, and therapeutic applications for cancers that express the antigen

    Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity.

    Get PDF
    The majority of chimeric antigen receptor (CAR) T-cell research has focused on attacking cancer cells. Here, we show that targeting the tumor-promoting, nontransformed stromal cells using CAR T cells may offer several advantages. We developed a retroviral CAR construct specific for the mouse fibroblast activation protein (FAP), comprising a single-chain Fv FAP [monoclonal antibody (mAb) 73.3] with the CD8α hinge and transmembrane regions, and the human CD3ζ and 4-1BB activation domains. The transduced muFAP-CAR mouse T cells secreted IFN-γ and killed FAP-expressing 3T3 target cells specifically. Adoptively transferred 73.3-FAP-CAR mouse T cells selectively reduced FAP(hi) stromal cells and inhibited the growth of multiple types of subcutaneously transplanted tumors in wild-type, but not FAP-null immune-competent syngeneic mice. The antitumor effects could be augmented by multiple injections of the CAR T cells, by using CAR T cells with a deficiency in diacylglycerol kinase, or by combination with a vaccine. A major mechanism of action of the muFAP-CAR T cells was the augmentation of the endogenous CD8(+) T-cell antitumor responses. Off-tumor toxicity in our models was minimal following muFAP-CAR T-cell therapy. In summary, inhibiting tumor growth by targeting tumor stroma with adoptively transferred CAR T cells directed to FAP can be safe and effective, suggesting that further clinical development of anti-human FAP-CAR is warranted

    Trumpler 16-26: A New Centrifugal Magnetosphere Discovered via SDSS/APOGEE H-band Spectroscopy

    Full text link
    We report the discovery of a new example of the rare class of highly magnetized, rapidly rotating, helium enhanced, early B stars that produce anomalously wide hydrogen emission due to a centrifugal magnetosphere (CM). The star is Trumpler 16-26, a B1.5 V member of the Trumpler 16 open cluster. A CM was initially suspected based on hydrogen Brackett series emission observed in SDSS/APOGEE HH-band spectra. Similar to the other stars of this type, the emission was highly variable and at all times remarkable due to the extreme velocity separations of the double peaks (up to 1300 km s1^{-1}.) Another clue lay in the TESS lightcurve, which shows two irregular eclipses per cycle when phased with the likely 0.9718115 day rotation period, similar to the behavior of the well known CM host star σ\sigma Ori E. To confirm a strong magnetic field and rotation-phase-locked variability, we initiated a follow-up campaign consisting of optical spectropolarimetry and spectroscopy. The associated data revealed a longitudinal magnetic field varying between 3.1-3.1 and +1.6+1.6 kG with the period found from photometry. The optical spectra confirmed rapid rotation (vsini=195v \sin i=195 km s1^{-1}), surface helium enhancement, and wide, variable hydrogen emission. Tr16-26 is thus confirmed as the 20th^{\rm th} known, the fourth most rapidly rotating, and the faintest CM host star yet discovered. With a projected dipole magnetic field strength of Bd>11B_{\rm d}>11 kG, Tr16-26 is also among the most magnetic CM stars

    Systematic Evaluation of Candidate Blood Markers for Detecting Ovarian Cancer

    Get PDF
    Epithelial ovarian cancer is a significant cause of mortality both in the United States and worldwide, due largely to the high proportion of cases that present at a late stage, when survival is extremely poor. Early detection of epithelial ovarian cancer, and of the serous subtype in particular, is a promising strategy for saving lives. The low prevalence of ovarian cancer makes the development of an adequately sensitive and specific test based on blood markers very challenging. We evaluated the performance of a set of candidate blood markers and combinations of these markers in detecting serous ovarian cancer.We selected 14 candidate blood markers of serous ovarian cancer for which assays were available to measure their levels in serum or plasma, based on our analysis of global gene expression data and on literature searches. We evaluated the performance of these candidate markers individually and in combination by measuring them in overlapping sets of serum (or plasma) samples from women with clinically detectable ovarian cancer and women without ovarian cancer. Based on sensitivity at high specificity, we determined that 4 of the 14 candidate markers--MUC16, WFDC2, MSLN and MMP7--warrant further evaluation in precious serum specimens collected months to years prior to clinical diagnosis to assess their utility in early detection. We also reported differences in the performance of these candidate blood markers across histological types of epithelial ovarian cancer.By systematically analyzing the performance of candidate blood markers of ovarian cancer in distinguishing women with clinically apparent ovarian cancer from women without ovarian cancer, we identified a set of serum markers with adequate performance to warrant testing for their ability to identify ovarian cancer months to years prior to clinical diagnosis. We argued for the importance of sensitivity at high specificity and of magnitude of difference in marker levels between cases and controls as performance metrics and demonstrated the importance of stratifying analyses by histological type of ovarian cancer. Also, we discussed the limitations of studies (like this one) that use samples obtained from symptomatic women to assess potential utility in detection of disease months to years prior to clinical detection

    Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.

    Get PDF
    BackgroundT cells engineered to express chimeric antigen receptors (CARs) have established efficacy in the treatment of B-cell malignancies, but their relevance in solid tumors remains undefined. Here we report results of the first human trials of CAR-T cells in the treatment of solid tumors performed in the 1990s.MethodsPatients with metastatic colorectal cancer (CRC) were treated in two phase 1 trials with first-generation retroviral transduced CAR-T cells targeting tumor-associated glycoprotein (TAG)-72 and including a CD3-zeta intracellular signaling domain (CART72 cells). In trial C-9701 and C-9702, CART72 cells were administered in escalating doses up to 1010 total cells; in trial C-9701 CART72 cells were administered by intravenous infusion. In trial C-9702, CART72 cells were administered via direct hepatic artery infusion in patients with colorectal liver metastases. In both trials, a brief course of interferon-alpha (IFN-α) was given with each CART72 infusion to upregulate expression of TAG-72.ResultsFourteen patients were enrolled in C-9701 and nine in C-9702. CART72 manufacturing success rate was 100% with an average transduction efficiency of 38%. Ten patients were treated in CC-9701 and 6 in CC-9702. Symptoms consistent with low-grade, cytokine release syndrome were observed in both trials without clear evidence of on target/off tumor toxicity. Detectable, but mostly short-term (≤14 weeks), persistence of CART72 cells was observed in blood; one patient had CART72 cells detectable at 48 weeks. Trafficking to tumor tissues was confirmed in a tumor biopsy from one of three patients. A subset of patients had 111Indium-labeled CART72 cells injected, and trafficking could be detected to liver, but T cells appeared largely excluded from large metastatic deposits. Tumor biomarkers carcinoembryonic antigen (CEA) and TAG-72 were measured in serum; there was a precipitous decline of TAG-72, but not CEA, in some patients due to induction of an interfering antibody to the TAG-72 binding domain of humanized CC49, reflecting an anti-CAR immune response. No radiologic tumor responses were observed.ConclusionThese findings demonstrate the relative safety of CART72 cells. The limited persistence supports the incorporation of co-stimulatory domains in the CAR design and the use of fully human CAR constructs to mitigate immunogenicity

    A novel mycobacterial Hsp70-containing fusion protein targeting mesothelin augments antitumor immunity and prolongs survival in murine models of ovarian cancer and mesothelioma

    Get PDF
    Background: Although dendritic cell (DC) vaccines are considered to be promising treatments for advanced cancer, their production and administration is costly and labor-intensive. We developed a novel immunotherapeutic agent that links a single-chain antibody variable fragment (scFv) targeting mesothelin (MSLN), which is overexpressed on ovarian cancer and mesothelioma cells, to Mycobacterium tuberculosis (MTB) heat shock protein 70 (Hsp70), which is a potent immune activator that stimulates monocytes and DCs, enhances DC aggregation and maturation and improves cross-priming of T cells mediated by DCs. Methods: Binding of this fusion protein with MSLN on the surface of tumor cells was measured by flow cytometry and fluorescence microscopy. The therapeutic efficacy of this fusion protein was evaluated in syngeneic and orthotopic mouse models of papillary ovarian cancer and malignant mesothelioma. Mice received 4 intraperitoneal (i.p.) treatments with experimental or control proteins post i.p. injection of tumor cells. Ascites-free and overall survival time was measured. For the investigation of anti-tumor T-cell responses, a time-matched study was performed. Splenocytes were stimulated with peptides, and IFNγ- or Granzyme B- generating CD3+CD8+ T cells were detected by flow cytometry. To examine the role of CD8+ T cells in the antitumor effect, we performed in vivo CD8+ cell depletion. We further determined if the fusion protein increases DC maturation and improves antigen presentation as well as cross-presentation by DCs. Results: We demonstrated in vitro that the scFvMTBHsp70 fusion protein bound to the tumor cells used in this study through the interaction of scFv with MSLN on the surface of these cells, and induced maturation of bone marrow-derived DCs. Use of this bifunctional fusion protein in both mouse models significantly enhanced survival and slowed tumor growth while augmenting tumor-specific CD8+ T-cell dependent immune responses. We also demonstrated in vitro and in vivo that the fusion protein enhanced antigen presentation and cross-presentation by targeting tumor antigens towards DCs. Conclusions: This new cancer immunotherapy has the potential to be cost-effective and broadly applicable to tumors that overexpress mesothelin
    corecore